УДК: 535.32 535.016
How phase dispersion of optical coatings affects intracavity second-harmonic generation of laser radiation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Иночкин М.В., Беззубик В.В. Влияние фазовой дисперсии оптических покрытий на внутрирезонаторную генерацию второй гармоники лазерного излучения // Оптический журнал. 2014. Т. 81. № 10. С. 13–19.
Inochkin M.V., Bezzubik V.V. How phase dispersion of optical coatings affects intracavity second-harmonic generation of laser radiation [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 10. P. 13–19.
M. V. Inochkin and V. V. Bezzubik, "How phase dispersion of optical coatings affects intracavity second-harmonic generation of laser radiation," Journal of Optical Technology. 81(10), 565-570 (2014). https://doi.org/10.1364/JOT.81.000565
This paper discusses how antireflection and reflective optical coatings, as well as the position of a nonlinear crystal inside the cavity, affect intracavity second-harmonic generation. It is shown that phase dispersion of typical antireflection coatings and many reflective coatings is compensated. The phase dispersion of certain types of reflective coatings in this case can introduce a significant contribution to the overall phase dispersion. Dual-frequency reflective coatings are classified with respect to the size of the added part of the generalized phase of the laser wave and its second harmonic. The optimum combinations of types of reflective coatings and the positions of the nonlinear crystal relative to the end mirror are determined for use in lasers with intracavity second-harmonic generation.
multilayer interference coatings, intracavity second-harmonic generation, phase dispersion, lasers
Acknowledgements:The authors express gratitude to N. R. Belashenkov for useful comments and discussion of this work and to L. V. Khloponin for help in carrying out the experiments, as well as to V. Sh. Aliev and B. M. Kruglov for kindly providing data on the structures of typical interference coatings used in practice.
OCIS codes: 140.3515
References:1. V. D. Volosov, N. E. Kornienko, V. N. Krylov, A. I. Ryzhkov, and V. L. Strizhevskiı˘, “Phase effects during intracavity generation of the second optical harmonic,” Opt. Spektrosk. 46, 119 (1979) [Opt. Spectrosc. 46, 64 (1979)].
2. P. A. Apanasevich, R. G. Zaporozhchenko, V. A. Zaporozhchenko, I. S. Zakharova, and A. V. Kachinskiı˘, “How misadjustment of phase synchronism in a nonlinear crystal and in air affects the intracavity frequency conversion of a USP,” Kvantovaya Elektron. (Moscow) 9, 1355 (1982) [Sov. J. Quantum Electron. 12, 861 (1982)].
3. F. A. Hopf, A. Tomita, and G. Al-Jumaily, “Second-harmonic interferometers,” Opt. Lett. 5, 386 (1980).
4. K. Stankov and J. Jethwa, “A new mode-locking technique using nonlinear mirror,” Opt. Commun. 66, 41 (1988).
5. V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics: Second-Harmonic Generators and Parametric Light Generators (Nauka, Moscow, 1982).
6. V. A. Moskalev, Theoretical Principles of Optophysical Research (Mashinostroenie, Leningrad, 1987).
7. T. N. Krylova, Interference Coatings (Mashinostroenie, Leningrad, 1973).
8. A. V. Ershov and A. I. Mashin, “Multilayer optical coatings. Design, materials, features of production by electron-beam evaporation,” in Training and Methods Material for the Qualification-Enhancement Program on New Materials of Electronics and Optoelectronics for Information–Telecommunication Systems (Izd. NGU, Nizhniı˘ Novgorod, 2006).
9. B. Edlen, “The refractive index of air,” Metrologia 2, 71 (1966).
10. T. M. Yarborough, T. Falk, and G. Hitz, “Enhancement of second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18, 70 (1971).