УДК: 004.932.2, 517.968, 681.7.014.3
Detecting a dynamic object on a complex background from a low-contrast point image on an optoelectronic device
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гузенко О.Б., Катулев А.Н., Колонсков А.А., Храмичев А.А. Обнаружение динамического объекта на сложном фоне по точечному слабоконтрастному изображению оптико-электронного прибора // Оптический журнал. 2014. Т. 81. № 11. С. 51–61.
Guzenko O.B., Katulev A.N., Kolonskov A.A., Khramichev A.A. Detecting a dynamic object on a complex background from a low-contrast point image on an optoelectronic device [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 11. P. 51–61.
O. B. Guzenko, A. N. Katulev, A. A. Kolonskov, and A. A. Khramichev, "Detecting a dynamic object on a complex background from a low-contrast point image on an optoelectronic device," Journal of Optical Technology. 81(11), 656-664 (2014). https://doi.org/10.1364/JOT.81.000656
This paper proposes a method of detecting dynamic objects on an image from an optoelectronic device when there is a complex background formed by dense cumulus and altocumulus clouds. The image of the object is a small (point), low-contrast image. The fractal-correlation method is based on the use of a sample in the form of the ratio of the likelihood functions of close-by alternative situations of the type “only a complex background is observed in the viewing zone of the optoelectronic device” or “a dynamic object on a complex background is observed in the viewing zone of the optoelectronic device.” An algorithm is constructed for detecting a dynamic object as a binary accumulator, using the local, most powerful criterion. The critical limit for making a decision is determined according to the Neyman–Pearson lemma for the allowable false-detection probability of a dynamic object. Modelling is used to establish the high effectiveness of the method.
optoelectronic device, method of detecting, point image, low contrast, complex background, close-by situations, criterion for detecting
OCIS codes: 100.0100, 100.2000, 110.3960.100.2000
References:1. V. E. Zuev and M. V. Kabanov, Optical-Signal Transport in the Earth’s Atmosphere (Sov. Radio, Moscow, 1977).
2. A. A. Khramichev, M. P. Koval’chuk, and V. B. Vasil’ev, “Technique for determining the spatial-frequency characteristics of a sky background,” Vest. Mosk. Gos. Tekh. Univ. Special Issue on Antennas and the Radio and Optical Ranges, Series Instrumentation, 2009, pp. 245–252.
3. A. A. Khramichev, L. F. Shevchenko, and V. I. Solov’ev, “Technique for statistically describing the optical radiation of airborne objects,” Vest. Mosk. Gos. Tekh. Univ. Special Issue on Antennas and the Radio and Optical Ranges, Series Instrumentation, 2009, pp. 253–258.
4. M. R. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (W. H. Freeman, New York, 1991; Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2001).
5. A. A. Potapov, “Fractals, fractional operators, and scaling—the basis of new methods for processing information, synthesizing fractal radio systems, antennas, and impedances,” in Materials of the Twentieth International Crimean Conference on High Frequency—Engineering and Telecommunication Technologies (KryMiKo), Sevastopol’, Sept. 13–17, 2010, vol. 1, pp. 39–46.
6. G. J. Hahn and S. S. Shapiro, Statistical Models in Engineering (Wiley, New York, 1967; Mir, Moscow, 1969).
7. B. M. Shchigolev, Mathematical Processing of Observations (FML, Moscow, 1962).
8. D. R. Cox and D. V. Hinkley, Theoretical Statistics (Chapman and Hall, London, 1974; Mir, Moscow, 1981).
9. Yu. G. Sosulin, Theoretical Principles of Radar and Radio Navigation (Radio i Svyaz’, Moscow, 1992).
10. A. E. Basharinov and B. S. Fleı˘shman, Methods of Statistical Sequential Analysis and Their Applications (Sov. Radio, Moscow, 1962), pp. 235–236.
11. D. V. Zhukov, I. A. Konyakhin, and A. A. Usik, “Iterative algorithm for determining the coordinates of the images of point radiators,” Opt. Zh. 76, No. 1, 43 (2009) [J. Opt. Technol. 76, 36 (2009)].
12. D. A. Gurchenkov, M. V. Zhendarev, A. S. Nabatchikov, and I. V. Yakimenko, “A method of detecting thermal point objects on a complex atmospheric background,” Matem. Morfologiya Élektron. Matem. Mediko-Biol. Zh. 11, No. 3 (2012).
13. S. L. Marple, Jr., Digital Spectral Analysis with Applications (Prentice Hall, Englewood Cliffs, N.J., 1987; Mir, Moscow, 1990), Chap. 16.
14. Yu. G. Sosulin and A. B. Russkin, “Fractal detection of extended low-contrast objects on an image,” Radiotekhnika, No. 12, 48 (2009).
15. A. N. Katulev, A. A. Kolonskov, A. A. Khramichev, and S. V. Yagol’nikov, “Adaptive method and algorithm for detecting low-contrast objects with an optoelectronic device,” Opt. Zh. 81, No. 2, 29 (2014) [J. Opt. Technol. 81, 75 (2014)].
16. B. A. Alpatov, P. V. Babayan, O. V. Balashov, and A. I. Stepashkin, Systems for the Automatic Detection and Comparison of Objects. Image Processing and Control (Radiotekhnika, Moscow, 2008).
17. S. M. Borzov and O. I. Potaturkin, “Detecting small dynamic objects with a mobile observation system,” Avtometriya 48, No. 1, 22 (2012).
18. V. S. Kirichuk and V. P. Kosykh, “Constructing a multichanel filter for determining point objects in an image formed by a photodetector array,” Avtometriya 18, No. 5, 82 (2012).
19. A. Yilmaz, K. Shafique, and M. Shah, “Target tracking in airborne forward-looking infrared imagery,” Image Vis. Comput. No. 7, 623 (2003).
20. I. M. Ivanov, “Spatial localization and adaptive filtering of weak signals on an intense noise background,” Radiotekh. Elektronika 57, 872 (2012).
21. B. V. Gnedenko, Course of Probability Theory (Nauka, Moscow, 1969).