УДК: 535.317, 535.015
Synthesizing hybrid objectives for optical coherent tomography
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Грамматин А.П., Цыганок Е.А., Егоров Д.И. Синтез гибридных объективов для оптической когерентной томографии // Оптический журнал. 2014. Т. 81. № 11. С. 69–74.
Grammatin A.P., Tsyganok E.A., Egorov D.I. Synthesizing hybrid objectives for optical coherent tomography [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 11. P. 69–74.
A. P. Grammatin, E. A. Tsyganok, and D. I. Egorov, "Synthesizing hybrid objectives for optical coherent tomography," Journal of Optical Technology. 81(11), 671-675 (2014). https://doi.org/10.1364/JOT.81.000671
This paper presents a technique for calculating hybrid objectives for spectral optical coherent tomography. A formula is obtained for determining the parameters of a kinoform that is the basic element of a hybrid objective that contains the kinoform and a lens part. Layouts are shown for hybrid microscope objectives with focal lengths of 32 mm and 16 mm and apertures of 0.2 and 0.4, respectively, operating in the wavelength ranges 1.26–1.36 μm and 0.8–1.0 μm. The objectives possess diffraction quality of the image.
optical coherent tomography, microscope objective, objective with kinoform element
Acknowledgements:This work was carried out at the University of Information Technologies, Mechanics, and Optics, with partial financial support of the Ministry of Education and Science of the Russian Federation (Grant 02.G25.31.0092) and with state financial support of the leading universities of the Russian Federation (Subsidy 074-U01).
OCIS codes: 080.3620, 170.4500, 080.3630, 050.1950
References:1. A. P. Grammatin, E. A. Tsyganok, and D. I. Egorov, “Synthesis of objectives for optical coherence tomography,” Opt. Zh. 80, No. 11, 23 (2013) [J. Opt. Technol. 80, 667 (2013)].
2. A. P. Grammatin and M. A. Gan, “Mathematical modelling of optical systems at the development and fabrication stages,” Opt. Zh. No. 1, 9 (1989) [Sov. J. Opt. Technol. 56, 7 (1989)].
3. M. A. Gan, Theory and Methods of Calculating Holographic and Kinoform Elements. A Methodological Guide (Gos. Opt. Inst., Leningrad, 1984).
4. M. A. Gan, “Third-order aberrations and the main parameters of axisymmetric holographic elements,” Opt. Spektrosk. 47, 759 (1979) [Opt. Spectrosc. (USSR) 47, 419 (1979)].
5. V. N. Churilovskiı˘, Theory of Chromatism of Third-Order Aberrations (Mashinostroenie, Leningrad, 1968).
6. A. P. Grammatin, “Aplanatic compensator of image curvature,” Opt. Mekh. Prom. No. 8, 16 (1965).
7. A. P. Grammatin, “Compensator of image curvature,” Inventor’s Certificate No. 164 444, Byull. Izobr. No. 5, 78 (1964).
8. M. M. Rusinov, The Composition of Optical Systems (Mashinostroenie, Leningrad, 1986).
9. L. N. Andreev, V. V. Ezhova, and G. S. Degtyareva, “The modular design of optical systems,” Izvestie Vyssh. Uchebn. Zaved. Prib. 57, No. 3, 57 (2014).
10. A. P. Grammatin, “Synthesis of optical systems that consist of lenses with aplanatic and isoplanatic surfaces and infinitely thin components,” Trudy Gos. Opt. Inst. 49, No. 183, 23 (1981).