УДК: 535.36
Transparent glass–ceramics based on ZnO and ZnO:Co2+ nanocrystals
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Алексеева И.П., Дымшиц О.С., Жилин А.А., Запалова С.С., Шемчук Д.В. Прозрачные стеклокристаллические материалы на основе нанокристаллов ZnO и ZnO:Co2+ // Оптический журнал. 2014. Т. 81. № 12. С. 27–34.
Alekseeva I.P., Dymshits O.S., Zhilin A.A., Zapalova S.S., Shemchuk D.V. Transparent glass–ceramics based on ZnO and ZnO:Co2+ nanocrystals [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 12. P. 27–34.
I. P. Alekseeva, O. S. Dymshits, A. A. Zhilin, S. S. Zapalova, and D. V. Shemchuk, "Transparent glass–ceramics based on ZnO and ZnO:Co2+ nanocrystals," Journal of Optical Technology. 81(12), 723-728 (2014). https://doi.org/10.1364/JOT.81.000723
Glasses of the potassium zinc aluminum silicate system, undoped and doped with cobalt oxide, have been synthesized. Differential-thermal analysis and x-ray phase-diffraction analysis were used to study the crystallization physics and the nature of the phases precipitated when the starting glasses were heat treated in the temperature interval 680°C–950°C, as well as the effect of adding cobalt oxide on the phase-transformation processes. Transparent glass–ceramic materials based on only nanocrystals of zinc oxide were obtained, along with zinc oxide and β-willemite. It is found that, when the cobalt-bearing glasses are heat-treated, cobalt ions from the starting glass initially enter into the resulting zinc oxide nanocrystals and, as the temperature is increased, into the β-willemite nanocrystals.
glass–ceramic material, zinc oxide, nanocrystals, x-ray phase-diffraction analysis, absorption
Acknowledgements:This work was carried out with the partial support of the Russian Foundation for Basic Research, Grant 13-03-01289 A.
OCIS codes: 010.1030, 160.2900, 160.6000, 300.6560
References:1. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research—old and very recent results,” Phys. Status Solidi B 247, 1424 (2010).
2. Ü. Özgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doˇgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 041301 (2005).
3. A. B. Djurišić, X. Chen, Y. H. Leung, and A. M. C. Nga, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22, 6526 (2012).
4. W. Höland and G. Beall, Glass-Ceramic Technology (Am. Ceram. Soc., Westerville, Ohio, 2002).
5. A. M. Malyarevich, I. A. Denisov, Y. V. Volk, K. V. Yumashev, O. S. Dymshits, and A. A. Zhilin, “Nanosized glass ceramics doped with transition metal ions: nonlinear spectroscopy and possible laser applications,” J. Alloys Compd. 341, 247 (2002).
6. L. R. Pinckney, “Transparent glass-ceramics based on ZnO crystals,” Phys. Chem. Glasses 47, 127 (2006).
7. Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Near-infrared emission of Yb 3+ through energy transfer from ZnO to Yb 3+ in glass–ceramic containing ZnO nanocrystals,” Opt. Lett. 36, 2767 (2011).
8. B. Ghaemi, G. Zhao, S. Huang, J. Wang, and J. Han, “Structural and luminescence properties of Er-doped zinc-alumino-silicate glass-ceramic,” J. Am. Ceram. Soc. 95, 1911 (2012).
9. B. Ghaemi, G. Zhao, G. Jie, H. Xi, X. Li, J. Wang, and J. Han, “A study of formation and photoluminescence proprieties of ZnO quantum dot doped zinc-alumosilicate glass–ceramic,” Opt. Mater. 33, 827 (2011).
10. H. Masai, T. Toda, T. Ueno, Y. Takahashi, and T. Fujiwara, “ZnO glass–ceramics: An alternative way to produce semiconductor materials,” Appl. Phys. Lett. 94, 151908 (2009).
11. G. Qian, X. Liang, J. Bei, S. Yuan, and G. Chen, “Photoluminescence properties of zinc oxide in barium and fluorine silicate glasses,” J. Am. Ceram. Soc. 90, 1255 (2007).
12. G. Chen, M. Nikl, N. Solovieva, A. Beitlerova, J. Rao, Y. Yang, Y. Zhang, X. Jiang, and C. Zhu, “Photoluminescent properties of nanocrystallized zinc borosilicate glasses,” Radiat. Meas. 38, 771 (2004).
13. H. Lipson and H. Steeple, Interpretation of X-ray Powder Patterns (Martins Press, London, 1970).
14. T. Bates, “Ligand field theory and absorption spectra of transition-metal ions in glasses,” in Modern Aspects of the Vitreous State, J. D. Mackenzie, ed. (Butterworths, London, 1962), pp. 195–254.
15. C. R. Bamford, Colour Generation and Control in Glass (Elsevier, Amsterdam, 1997).
16. U. Kang, O. S. Dymshits, A. A. Zhilin, T. I. Chuvaeva, and G. T. Petrovsky, “Structural states of Co2+ in β-eucryptite-based glass-ceramics nucleated with ZrO 2,” J. Non-Cryst. Solids 204, 151 (1996).
17. M. Hunault, G. Calas, L. Galoisy, G. Lelong, and M. Newville, “Local ordering around tetrahedral Co 2+ in silicate glasses,” J. Am. Ceram. Soc. 97, 60 (2014).
18. H. Keppler and N. Bagdassarov, “The speciation of Ni and Co in silicate melts from optical absorption spectra to 1500°C,” Chem. Geol. 158, 105 (1999).
19. Y. Z. Peng, T. Liew, W. D. Song, C. W. An, K. L. Teo, and T. C. Chong, “Structural and optical properties of Co-doped ZnO thin films,” J. Supercond. Nov. Magn. 18, No. 1, 97 (2005).
20. E. Ozel, H. Yurdakul, S. Turan, M. Ardit, G. Cruciani, and M. Dondi, “Co-doped willemite ceramic pigments: technological behavior, crystal structure and optical properties,” J. Am. Ceram. Soc. 30, 3319 (2010).
21. P. Koidl, “Optical absorption of Co2+ in ZnO,” Phys. Rev. B 15, 2493 (1977).
22. T. C. Brunold, H. U. Gudel, and E. Cavalli, “Absorption and luminescence spectroscopy of Zn 2SiO4 willemite crystals doped with Co2+,” Chem. Phys. Lett. 252, 112 (1996).