УДК: 666.11.01, 535.36
The scattering of visible radiation in glasses with lead sulfide nanocrystals
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ананьев А.В., Максимов Л.В., Онущенко А.А., Савостьянов В.А. Рассеяние видимого излучения в стёклах с нанокристаллами сульфида свинца // Оптический журнал. 2014. Т. 81. № 12. С. 43–45.
Ananiev A.V., Maksimov L.V., Onushchenko A.A., Savostianov V.A. The scattering of visible radiation in glasses with lead sulfide nanocrystals [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 12. P. 43–45.
A. V. Anan’ev, L. V. Maksimov, A. A. Onushchenko, and V. A. Savost’yanov, "The scattering of visible radiation in glasses with lead sulfide nanocrystals," Journal of Optical Technology. 81(12), 735-736 (2014). https://doi.org/10.1364/JOT.81.000735
This paper discusses the light scattering of multicomponent silicate glass doped with lead sulfide, which results from secondary heat treatment when a two-phase system consisting of a glassy matrix and a nanostructured semiconductor phase of PbS is formed. The Rayleigh–Brillouin scattering spectra are obtained in this system. It is established that the Landau–Placzek ratio monotonically increases from 170 to 850 s as the heat-treatment time is increased, because the radius of the PbS crystals in the range 2.0–2.5 nm and their concentration increase.
light scattering, semiconductor nanocrystals in glassy matrix, Landau–Placzek ratio
Acknowledgements:This work was carried out with the financial support of the Russian Foundation for Basic Research as part of Grant No. 13-02-01458.
OCIS codes: 160.4760
References:1. I. P. Alekseeva, O. V. Atonen, V. V. Golubkov, A. A. Onushchenko, and É. L. Raaben, “Kinetic regularities of the precipitation of PbS nanocrystals in sodium silicate glass,” Fiz. Khim. Stekla 33, No. 3, 3 (2007).
2. O. V. Atonen, V. V. Golubkov, and A. A. Onushchenko, “The effect of heat-treatment regimes on the processes of precipitation and solution of lead sulfide nanocrystals in sodium zinc silicate glass,” Fiz. Khim. Stekla 36, 481 (2010).
3. A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2 ,” J. Non-Cryst. Solids 354, 3049 (2008).
4. F. W. Wise, “Lead salt quantum dots: limit of strong quantum confinement,” Acc. Chem. Res. 33, 773 (2000).
5. I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B 14, 1632 (1997).
6. J. Schroeder, “Light scattering of glass,” in Treatise on Material Science and Technology. Glass 1, Vol. 12 (Academic, New York, 1975).
7. A. A. Manenkov, A. M. Prokhorov, and A. I. Ritus, “Rayleigh and Brillouin scattering of light in optical glasses: the measurement of hypersound velocity, elastooptical constants, and extinction coefficients,” Fiz. Tverd. Tela (Leningrad) 17, 1111 (1975) [Sov. Phys. Solid State 17, 706 (1975)].
8. G. O. Karapetyan and L. V. Maksimov, “Chemically inhomogeneous structure of potassium lead silicate glasses from the data of Rayleigh and Brillouin scattering,” Fiz. Khim. Stekla 11, 402 (1985).
9. A. Hodroj, P. Simon, P. Florian, M.-H. Chopinet, and Y. Vaills, “Phase separation and spatial morphology in sodium silicate glasses by AFM, light scattering, and NMR,” J. Am. Ceram. Soc. 96, 2454 (2013).