ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.382, 621.383.5

Image conversion in uncooled mosaic microbolometer detectors for the IR and terahertz regions with a format up to 3072 × 576 or more

For Russian citation (Opticheskii Zhurnal):

Демьяненко М.А., Есаев Д.Г., Клименко А.Г., Козлов А.И., Марчишин И.В., Новоселов А.Р., Овсюк В.Н. Преобразование изображений в мозаичных неохлаждаемых микроболометрических приемниках инфракрасного и терагерцового диапазонов форматом до 3072х576 и более // Оптический журнал. 2014. Т. 81. № 3. С. 35–43.

 

Demiyanenko M.A., Esaev D.G., Klimenko A.G., Kozlov A.I., Marchishin I.V., Novoselov A.R., Ovsyuk V.N. Image conversion in uncooled mosaic microbolometer detectors for the IR and terahertz regions with a format up to 3072 × 576 or more [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 3. P. 35–43.

For citation (Journal of Optical Technology):

M. A. Dem’yanenko, D. G. Esaev, A. G. Klimenko, A. I. Kozlov, I. V. Marchishin, V. N. Ovsyuk, and A. R. Novoselov, "Image conversion in uncooled mosaic microbolometer detectors for the IR and terahertz regions with a format up to 3072 × 576 or more," Journal of Optical Technology. 81(3), 139-145 (2014). https://doi.org/10.1364/JOT.81.000139

Abstract:

This paper discusses the process-design principles for creating hyperlarge-format mosaic photodetectors (MPDs), based on the butt-joining process of silicon chips with uncooled small-format microbolometer detector arrays (MBDAs). The basic unit is investigated and optimized for the process operations of laser scribing as part of the high-precision butt-joining process of chips in which the process part of the blind zone between the photosensitive edge elements of adjacent MBDA chips has a total size no greater than 30 μm. The design and layout are synthesized for 384×288-format silicon multiplexers, from which a 3072×576-format MPD fabricated using the butt-joining process developed here can provide better than 99% image-conversion efficiency for IR microbolometers and up to 100% for terahertz-range microbolometers.

Keywords:

mosaic photodetector, microbolometer, silicon multiplexer, IR region, terahertz region, scribing, pulsed nanosecond laser

Acknowledgements:

The authors are grateful to Academician A. L. Aseev for supporting the scientific research work of this specialization and to V. V. Filippova for help in designing the photomasks.

OCIS codes: 040.3060, 110.3080, 130.5990

References:

1. A. M. Filachev, I. I. Taubkin, and M. A. Trishenkov, Solid-State Photoelectronics. Physical Principles (Fizmatkniga, Moscow, 2005).
2. T. Sparfke and J. W. Beletic, “Infrared focal plane arrays for space applications,” Opt. Photon. News 19, No. 6, 22 (2008).
3. G. Finger and J. W. Beletic, “Review of the state of infrared detectors for astronomy in retrospect of the June 2002 Workshop on Scientific Detectors for Astronomy,” Proc. SPIE 4841, 839 (2003).
4. R. J. Dorn, G. Finger, G. Huster, H.-U. Kaeufl, J.-L. Lizon, L. Mehrgan, M. Meyer, J.-F. Pirard, A. Silber, J. Stegmeier, and A. F.-M. Moorwood, “The CRIRES InSb megapixel focal-plane-array detector mosaic,” Proc. SPIE 5499, 510 (2004).
5. P. A. Scowen, R. Jansen, M. Beasley, S. Macenka, S. Shaklan, D. Calzetti, S. Desch, A. Fullerton, J. Gallagher, S. Malhotra, M. McCaughrean, S. Nikzad, R. O’Connell, S. Oey, D. Padgett, J. Rhoads, A. Roberge, O. Siegmund, N. Smith, D. Stern, J. Tumlinson, R. Windhorst, R. Woodruff, D. Spergel, and K. Sembach, “Design and implementation of the Wide-fieldHigh-Resolution UV/Optical Star Formation Camera for the THEIA Mission,” Bull. Am. Astron. Soc. 41, No. 1, 361 (2009).
6. A. R. Novoselov, “Development of high-efficiency mosaic photodetectors based on linear arrays of photosensitive elements,” Avtometriya 46, No. 6, 106 (2010).
7. J. P. Chamonal, E. Mottin, P. Audebert, M. Ravetto, M. Caes, and J. P. Chatard, “Long linear MWIR and LWIR HgCdTe arrays for high resolution imaging,” Proc. SPIE 4130, 452 (2000).
8. Z. Yu. Gotra, Technology of Microelectronic Devices (Radio i Svyaz’, Moscow, 1991).
9. H. Koebner, ed., Industrial Applications of Lasers (Wiley, New York, 1984; Mashinostroenie, Moscow, 1988).
10. J. Narayan and F. W. Young, “Growth of dislocations during laser melting and solidification,” Appl. Phys. Lett. 35, 330 (1979).
11. A. Baldullaeva, A. I. Vlasenko, É. I. Kuznetsov, A. V. Lomovtsev, P. E. Mozol’, and A. B. Smirnov, “Pulsed laser-stimulated surface acoustic waves in p-CdTe chips,” Fiz. Tekh. Poluprovodn. 35, 960 (2001) [Semiconductors 35, 924 (2001)].
12. P. M. Mooney, R. T. Young, J. Karins, Y. H. Lee, and J. W. Corbett, “Defects in laser-damaged silicon observed by DLTS,” Phys. Status Solidi A 48, K31 (1978).
13. C. N. Afonso, M. Alonso, J. L. H. Neira, A. D. Sequeira, M. F. da Silva, and J. C. Soares, “Pulsed laser-induced effects on the HgCdTe surface,” J. Vac. Sci. Technol. A 7, 3256 (1989).
14. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969; Mir, Moscow, 1973).
15. M. H. Hong and Y. F. Lu, “Optical detection of laser plasma interaction during laser ablation,” Proc. SPIE 3618, 61 (1999).
16. A. R. Novoselov and A. G. Klimenko, “Processes in semiconductor materials after laser cutting,” Proc. SPIE 4426, 150 (2002).
17. A. I. Kozlov, “Analysis of the construction principles of circuits of silicon multiplexers for multielement IR photodetectors,” Avtometriya 46, 118 (2010).
18. S. Muroga, VLSI Systems Design: When and How to Design Very Large Scale Integrated Circuits, book 1 (Wiley, New York, 1982; Mir, Moscow, 1985).