ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Transmission characteristics of a Raman-amplified atomic optical filter in rubidium at 780 nm

For Russian citation (Opticheskii Zhurnal):

Wenjin Zhang, Yufeng Peng Transmission characteristics of a Raman-amplified atomic optical filter in rubidium at 780 nm (Характеристики пропускания рубидиевого атомного оптического фильтра на длине волны 780 нм, использующего рамановское усиление) [на англ. яз.] // Оптический журнал. 2014. Т. 81. № 4. С. 11–20.

 

Wenjin Zhang, Yufeng Peng Transmission characteristics of a Raman-amplified atomic optical filter in rubidium at 780 nm (Характеристики пропускания рубидиевого атомного оптического фильтра на длине волны 780 нм, использующего рамановское усиление) [in English] // Opticheskii Zhurnal. 2014. V. 81. № 4. P. 11–20.

For citation (Journal of Optical Technology):

Wenjin Zhang and Yufeng Peng, "Transmission characteristics of a Raman-amplified atomic optical filter in rubidium at 780 nm," Journal of Optical Technology. 81(4), 174-181 (2014). https://doi.org/10.1364/JOT.81.000174

Abstract:

The transmission characteristics of a Raman-amplified atomic filter that can be used to detect fairly weak signals in free-space quantum-key distribution or laser communications are analyzed and discussed in the coherent and incoherent pump fields respectively. The theoretical model for the calculation of the transmission characteristics of a ground-state Raman-amplified Faraday dispersion atomic optical filter based on Raman gain and Faraday rotation is presented. The results show that the filter in a coherent pump field can achieve higher transmission and larger tunability than that in an incoherent pump field due to elimination of pumping detuning. In addition, the filter has a large scale tunability over 3.5 GHz via the Faraday transmission peak adjusted while its bandwidth is only 66 MHz, which is useful for free-space laser communication and lidar systems.

Keywords:

atomic optical filter, Raman light amplification, Rubidium, Faraday dispersion, hyperfine structures

Acknowledgements:

The authors would like to acknowledge the support from the National Natural Science Foundation of China (grant 61077037).

OCIS codes: 120.2440

References:

1. Yeh P. Dispersive magnetooptic filters // Appl. Opt. 1982. V. 21. № 11. P. 2069–2075.
2. Yin B., Shay T.M. Theoretical model for a Faraday anomalous dispersion optical filter // Opt. Lett. 1991. V. 16. № 20. P. 1617–1619.
3. Menders J., Benson K., Bloom S.H., Liu C.S., Korevaar E. Ultranarrow line filtering using a Cs Faraday filter at 852 nm // Opt. Lett. 1991. V. 16. № 11. P. 846–848.
4. Chen H., She C.Y., Searcy P., Korevaar E. Sodium-vapor dispersive Faraday filter // Opt. Lett. 1993. V. 18. № 12. P. 1019–1021.
5. Hu Z., Sun X., Liu Y., Fu L., Zeng X. Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line // Opt. Commun. 1998. V. 156. № 4–6. P. 289–293.
6. Zhang Y., Jia X., Ma Z., Wang Q. Potassium Faraday optical filter in line-center operation // Opt. Commun. 2001. V. 194. № 1–3. P. 147–150.
7. Dick D.J., Shay T.M. Ultrahigh-noise rejection optical filter // Opt. Lett. 1991. V. 16. № 11. P. 867–869.
8. Dressler E.T., Laux A.E., Billmers R.I. Theory and experiment for the anomalous Faraday effect in potassium // J. Opt. Soc. Am. B. 1996. V. 13. № 9. P. 1849–1858.
9. Hu Z., Sun X., Zeng X., Peng Y., Tang J. Zhang L., Wang Q., Zheng L. Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field // Opt. Commun. 1993. V. 101. № 3–4. P. 175–178.
10. Tang J., Wang Q., Li Y., Zhang L., Gan J., Duan M., Kong J., Zheng L. Experimental study of a model digital space optical communication system with new quantum devices // Appl. Opt. 1995. V. 34. № 15. P. 2619–2622.
11. Fricke-Begemann C., Alpers M., Höffner J. Daylight rejection with a new receiver for potassium resonance temperature lidars // Opt. Lett. 2002. V. 27. № 21. P. 1932–1934.
12. Höffner J., Fricke-Begemann C. Accurate lidar temperatures with narrowband filters // Opt. Lett. 2005. V. 30. № 8. P. 890–892.
13. Popescu A., Walldorf D., Schorstein K., Walther T. On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system // Opt. Commun. 2006. V. 264. № 2. P. 475–481.
14. Buttler W.T., Hughes R.J., Kwiat P.G., Lamoreaux S.K., Luther G.G., Morgan G.L., Nordholt J.E., Peterson C.G., Simmons C.M. Practical free-space quantum key distribution over 1 km // Phys. Rev. Lett. 1998. V. 81. № 15. P. 3283–3286.
15. Shan X., Sun X., Luo J., Tan Z., Zhan M. Free-space quantum key distribution with Rb vapor filters // Appl. Phys. Lett. 2006. V. 89. № 19. P. 191121–191123.
16. Ohman Y. On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic ratation // Stockholms Obs. Ann. 1956. V. 19. № 4. P. 9–11.
17. Harrell S.D., She C.Y., Yuan T., Krueger D.A., Chen H., Chen S.S., Hu Z.L. Sodium and potassium vapor Faraday filters revisited: theory and applications // J. Opt. Soc. Am. B. 2009. V. 26. № 4. P. 659–670.
18. Peng Y.F., Tang J.X., Wang Q.J. Study of Faraday anomalous dispersion spectra of the hyperfine structure of Rb D2 lines // Acta Phys. Sin. (Overseas Edn). 1993. V. 2. № 1. P. 1–8.
19. Zielinska J.A., Beduini F.A., Godbout N., Mitchell M.W. Ultranarrow Faraday rotation filter at the Rb D1 line // Opt. Lett. 2012. V. 37. № 4. P. 524–526.
20. Agarwal G.S. Origin of gain in systems without inversion in bare or dressed states // Phys. Rev. A. 1991. V. 44. № 1. P. R28–R30.

21. Zibrov A.S., Lukin. M.D., Nikonov D.E., Hollberg L., Scully M.O., Velichansky V.L., Robinson H.G. Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb // Phys. Rev. Lett. 1995. V. 75. № 8. P. 1499–1502.
22. Zhu Y., Lin J. Sub-Doppler light amplification in a coherently pumped atomic system // Phys. Rev. A. 1996. V. 53. № 3. P. 1767–1774.
23. Zhu Y. Light amplification mechanisms in a coherently coupled atomic system // Phys. Rev. A. 1997. V. 55. № 6. P. 4568–4575.
24. Wanare H. Gain without population inversion in V-type systems driven by a frequency-modulated field // Phys. Rev. A. 2002. V. 65. № 3. P. 033417–033427.
25. Kang H., Wen L., Zhu Y. Normal or anomalous dispersion and gain in a resonant coherent medium // Phys. Rev. A. 2003. V. 68. № 6. P. 063806–063810.
26. Kilin S.Y., Kapale K.T., Scully M.O. Lasing without inversion: counterintuitive population dynamics in the transient regime // Phys. Rev. Lett. 2008. V. 100. № 17. P. 173601–173604.
27. Shan X., Sun X., Luo J., Zhan M. Ultranarrow-bandwidth atomic filter with Raman light amplification // Opt. Lett. 2008. V. 33. № 16. P. 1842–1844.
28. Peng Y., Zhang W., Zhang L., Tang J. Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532 nm // Opt. Commun. 2009. V. 282. № 2. P. 236–241.