Support mechanism design of large aperture reflective mirror for large temperature variations
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Haili Hu, Baojun Zuo, Shouqian Chen, Minda Xu, Zhigang Fan Support mechanism design of large aperture reflective mirror for large temperature variations (Конструкция механизма крепления крупногабаритного зеркала для широкого температурного диапазона) [на англ. яз.] // Оптический журнал. 2014. Т. 81. № 4. С. 31–37.
Haili Hu, Baojun Zuo, Shouqian Chen, Minda Xu, Zhigang Fan Support mechanism design of large aperture reflective mirror for large temperature variations (Конструкция механизма крепления крупногабаритного зеркала для широкого температурного диапазона) [in English] // Opticheskii Zhurnal. 2014. V. 81. № 4. P. 31–37.
Haili Hu, Baojun Zuo, Shouqian Chen, Minda Xu, and Zhigang Fan, "Support mechanism design of large aperture reflective mirror for large temperature variations," Journal of Optical Technology. 81(4), 190-195 (2014). https://doi.org/10.1364/JOT.81.000190
A cold-background multi-target compounding system provides infrared targets for a hardware-in-the-loop simulation system, in which large aperture reflective mirrors are employed. In this paper, we propose a combined belt-back structure and design the flexible connection to solve the support mechanism of large aperture mirrors for 100 K temperature variations. By Finite Element Method analysis, the root mean square of the optimized mirror was better than λ/40 under self-gravity and 100 K temperature variations. By Zernike polynomial fitting, the modulate transmission function of the multi-target compounding system was over 0.5 and the root mean square spot diameter was less than 0.05 mrad. Results demonstrate that the proposed support mechanism was effective, providing analytical data for a 1 m level mirror for large environment temperature variations.
OCIS codes: 220.4610, 220.4880
References:1. Baessler R.J., Popper H. Infrared Simulation System (IRSS). Phase I // Defense Technical Information Center, 1977.
2. Bailey M., Doerr J. Contributions of Hardware-in-the-Loop Simulations to Navy Test and Evaluation // Proc. SPIE. 1996. V. 2741. P. 33.
3. Hu H.L., Zuo B.J., Chen S. Q. Multi-Target Compounding Technique Based on Dimpled Mirror // Opt. Eng. 2012. V. 51. P. 113001.
4. Cantey T.M., Beasleya D.B., Bendera M. Cold Background, Flight Motion Simulator Mounted, Infrared Scene Projectors Developed for Use in AMRDEC Hardware-in-the-Loop // Proc. SPIE. 2004. V. 5408. P. 96.
5. Yoder P. Opto-Mechanical System Design // Cooperate Marcel Dekker Inc, 1993.
6. 6. Raguzin R M., Zadorin E.Yu. Stability of the Support Structures of Optical Devices // Opt. Zh. 2011. V. 78. P. 32 [J. Opt. Tech. 2011. V. 78(1). P. 25].
7. Xu R.W, Liu L.R., Zhu L. Support Schemes and Thermal Effects Analyses of Large-Aperture Interferometer Mirrors // Proc. SPIE. 2004. V. 5531. P. 441.
8. Yu J., Shen S.D, Pan J.H. Pan Y.J. Manufacture of 1.8M Standard Spherical Mirror // Proc. SPIE. 2012. V. 8415. P. 84151A.
9. Wu X.X., Yang H.B., Zhang J.X. Design of Support System for the Large-aperture Sphere Mirror // Acta Photonica Sinica. 2009. V. 38(1).P. 129.
10. Sun BY. Flexible Regulating Structure of Optical Reflector of Space Remote Sensor // Journal of Harbin Institute of Technology. 2009. V. 41(9). P. 201.
11. Bhavikatti S. Finite Element Analysis // New Age International (P) Ltd., Publishers, 2005.