УДК: 53.06, 538.951, 538.958
On the interatomic interaction potential that describes bond weakening in classical molecular-dynamic modelling
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Липп В.П., Иванов Д.С., Ретфельд Б., Гарсия М.Э. О межатомном потенциале взаимодействия, описывающий ослабление связей в классическом молекулярно-динамическом моделировании // Оптический журнал. 2014. Т. 81. № 5. С. 32–34.
Lipp V.P., Ivanov D.S., Rethfeld B., Garcia M.E. On the interatomic interaction potential that describes bond weakening in classical molecular-dynamic modelling [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 5. P. 32–34.
V. P. Lipp, D. S. Ivanov, B. Rethfeld, and M. E. Garcia, "On the interatomic interaction potential that describes bond weakening in classical molecular-dynamic modelling," Journal of Optical Technology. 81(5), 254-255 (2014). https://doi.org/10.1364/JOT.81.000254
Rapid nonthermal melting can occur under the action of a supershort laser pulse in semiconductors. An attractive method for quantitatively describing the kinetics of such effects can be molecular-dynamic modelling, in which the interatomic potential depends on the parameters of the excited carriers. This paper discusses the properties that such a potential must possess. Based on a simple model for photoexcited carriers, it is shown that the condition of conservation of energy imposes definite requirements on the potential.
molecular dynamics, supershort laser pulses, interatomic potential, electron–hole pairs, non-thermal melting, laser interaction with matter
OCIS codes: 000.6800, 140.3390, 140.7090, 160.6000
References:1. Rousse A., Rischel C., Fourmaux S., Uschmann I., Sebban S., Grillon G., Balcou Ph., Förster E., Geindre J.P., Audebert P., Gauthier J.C., Hulin D. Non-thermal melting in semiconductors measured at femtosecond resolution // Nature. 2001. V. 410. P. 65–68.
2. Stampfli P., Bennemann K. H. Theory of the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma. // Phys. Rev. B. 1990. V. 42. P. 7163–7173.
3. Stampfli P., Bennemann K. H. Dynamical theory of the laser-induced instability of silicon. // Phys. Rev. B. 1992. B. V. 46. P. 10686–10692.
4. Korfiatis D.P., Thoma K.-A. Th., Vardaxoglou J.C. Conditions for femtosecond laser melting of silicon // J. Phys. D: Appl. Phys. 2007. V. 40. P. 6803–6808.
5. Zijlstra E.S., Zier T., Bauerhenne B., Krylow S., Geiger P.M., Garcia M.E. Femtosecond-laser-induced bond breaking and structural modifications in silicon, TiO2, and defective graphene: an ab initio molecular dynamics study // Appl. Phys. A. 2014. V. 114. P. 1–9.
6. Shokeen L., Schelling P.K. Thermodynamics and kinetics of silicon under conditions of strong electronic excitation // J. Appl. Phys. 2011. V. 109. P. 073503.
7. Van Driel H.M. Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses // Phys. Rev. B. 1987. V. 35. P. 8166–8176.
8. Vankemmel R., Schoenmaker W., De Meyer K. A unified wide temperature range model for the energy gap, the effective carrier mass, and intrinsic concentration in silicon // Solid State Electronics. 1993. V. 36. P. 1379–1384.
9. Shokeen L., Schelling P.K. Role of electronic-excitation effects in the melting and ablation of laser-excited silicon // Computational Materials Science. 2013. V. 67. P. 316–328.