ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.7.068

The formation of silver nanoparticles on the surface of silver-containing glasses when they are irradiated with nanosecond laser pulses

For Russian citation (Opticheskii Zhurnal):

Егоров В.И., Звягин И.В., Клюкин Д.А., Сидоров А.И. Формирование наночастиц серебра на поверхности серебросодержащих стекол при облучении наносекундными лазерными импульсами // Оптический журнал. 2014. Т. 81. № 5. С. 55–61.

 

Egorov V.I., Zvyagin I.V., Klyukin D.A., Sidorov A.I. The formation of silver nanoparticles on the surface of silver-containing glasses when they are irradiated with nanosecond laser pulses [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 5. P. 55–61.

For citation (Journal of Optical Technology):

V. I. Egorov, I. V. Zvyagin, D. A. Klyukin, and A. I. Sidorov, "The formation of silver nanoparticles on the surface of silver-containing glasses when they are irradiated with nanosecond laser pulses," Journal of Optical Technology. 81(5), 270-274 (2014). https://doi.org/10.1364/JOT.81.000270

Abstract:

It is shown that the action of a nanosecond pulse of laser radiation with wavelengths of 0.53 and 1.06 μm on glass with a waveguide layer that contains silver ions causes silver nanoparticles to be formed on the surface of the glass. The nanoparticles are fixed on the surface by the dielectric components of the glass. A mechanism is proposed for the formation of silver nanoparticles when the laser acts.

Keywords:

ablation, nanosecond pulse, laser radiation, silicate glass, silver nanoparticle

Acknowledgements:

This work was carried out with the support of the Federal Special Program “Scientific and scientific–pedagogical staffs of innovation of Russia” in 2009–13 (Contract P412 5/12/2010, Ministry of Education and Science of the RF), the Federal Special Program “Research and development on high-priority specializations of the evolution of the scientific-and-engineering complex of Russia in 2007–12,” (Contract No. 16.552.11.7002, 4/29/2011, Ministry of Scientific Education of the RF), as well as the analytical departmental special program “Development of the scientific potential of institutions of higher education” (Projects Nos. RNP 2.1.1/10450 and RNP 2.1.1/10621, Ministry of Education and Science of the RF), and with state financial support of the leading universities of the RF (Subsidy 074-U01).

OCIS codes: 140.3330

References:

1. I. N. Zavestovskaya, “Laser nanostructuring of materials surfaces,” Kvant. Elektron. (Moscow) 40, 942 (2010) [Quantum Electron. 40, 942 (2010)].
2. V. V. Osipov, V. V. Platonov, and V. V. Lisenkov, “Laser ablation plume dynamics in nanoparticle synthesis,” Kvant. Elektron. (Moscow) 39, 541 (2009) [Quantum Electron. 39, 541 (2009)].
3. A. V. Bulgakov, A. B. Evtushenko, Yu. G. Shukhov, I. Ozerov, and V. Marin, “Pulsed laser ablation of binary semiconductors: mechanisms of vaporisation and cluster formation,” Kvant. Elektron. (Moscow) 40, 1021 (2010) [Quantum Electron. 40, 1021 (2010)].
4. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. 71, 033406 (2005).
5. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).
6. M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19, 2045 (2009).
7. Y. Chen, J. J. Jaakola, A. Saynatjoki, A. Tervonen, and S. Honkanen, “Glass-embedded silver nanoparticle patterns by masked ion-exchange process for surface-enhanced Raman scattering,” J. Raman Spectrosc. 42, 936 (2011).
8. L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, Biomedical Application (Nauka, Moscow, 2008).
9. S. V. Karpov and V. V. Slabko, Optical and Photophysical Properties of Fractal-Structured Sols of Metals (Izd. SO RAN, Novosibirsk, 2003).
10. L. Shang, S. Dong, and G. U. Nienhaus, “Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications,” Nano Today 6, No. 4, 401 (2011).
11. B. S. Gonzalez, M. J. Rodriguez, C. Blanco, J. Rivas, M. A. Lopez-Quintela, and J. M. G. Martinho, “One-step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters,” Nano Lett. 10, 4217 (2010).
12. A. P. Boltaev, N. A. Penin, A. O. Pogosov, and F. A. Pudonin, “Detection of photoconductivity in hyperfine metal films in the visible and infrared spectral regions,” Zh. Eksp. Teor. Fiz. 123, 1067 (2003) [JETP 96, 945 (2003)].
13. R. A. Ganeev, A. I. Ryasnyanskiı˘, A. L. Stepanov, M. K. Kodirov, and T. Usmanov, “Nonlinear properties of composites based on dielectric layers containing copper and silver nanoparticles,” Opt. Spektrosk. 95, 1034 (2003) [Opt. Spectrosc. 95, 967 (2003)].
14. A. L. Stepanov, “Modification of implanted metal nanoparticles in dielectrics by high-power laser pulses,” Rev. Adv. Mater. Sci. 4, 45 (2003).
15. A. I. Ignat’ev, A. V. Nashchekin, V. M. Nevedomskiı˘, O. A. Podsvirov, A. I. Sidorov, A. P. Solov’ev, and O. A. Usov, “Formation of silver nanoparticles in photothermorefractive glasses during electron irradiation,” Zh. Tekh. Fiz. 81, No. 5, 75 (2011) [Tech. Phys. 56, 662 (2011)].
16. Yu. Kaganovskii, E. Mogilko, A. A. Lipovskii, and M. Rosenbluh, “Formation of nanoclusters in silver-doped glasses in wet atmosphere,” J. Phys.: Conf. Ser. 61, 508 (2007).
17. P. A. Obraztsov, A. V. Nashchekin, N. V. Nikonorov, A. I. Sidorov, A. V. Panfilova, and P. N. Brunkov, “Formation of silver nanoparticles on the silicate glass surface after ion exchange,” Fiz. Tverd. Tela 55, 1180 (2013) [Phys. Solid State 55, 1272 (2013)].
18. D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C 116, 10723 (2012).
19. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
20. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032 (2012).
21. T. Cheng, C. Rangan, and J. E. Sipe, “Metallic nanoparticles on waveguide structures: effects on waveguide mode properties and the promise of sensing applications,” J. Opt. Soc. Am. 30, 743 (2013).
22. V. I. Egorov, A. V. Naschekin, N. V. Nikonorov, and A. I. Sidorov, “Silver nanoparticles and films formation on the surface of silver-containing glasses by laser ablation,” in Proceedings of International Symposium on Fundamentals of Laser Assisted Micro and Nanotechnologies (FLAMN-13), Saint Petersburg, Russia, June 24–28, 2013, pp. 117–118.
23. A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass wave-guide technology: a review,” Opt. Eng. 50, 071107 (2011).
24. N. I. Koroteev and I. L. Shumaı˘, The Physics of Powerful Laser Radiation (Nauka, Moscow, 1991).
25. N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Silver nanoparticles in oxide glasses: technologies and properties,” in Silver Nanoparticles D. P. Perez, ed. (In-Tech, Vukovar, Croatia, 2010), pp. 177–200.
26. B. Soller and D. Hall, “Scattering enhancement from an array of interacting dipoles near a planar waveguide,” J. Opt. Soc. Am. B 19, 2437 (2002).