ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.373.535

The contribution of the polariton mechanism of the surface microstructuring of silicon by picosecond laser pulses

For Russian citation (Opticheskii Zhurnal):

Гук И.В., Шандыбина Г.Д., Яковлев Е.Б., Головань Л.А. Вклад поляритонного механизма микроструктурирования поверхности кремния пикосекундными лазерными импульсами // Оптический журнал. 2014. Т. 81. № 5. С. 62–67.

 

Guk I.V., Shandybina G.D., Yakovlev E.B., Golovan L.A. The contribution of the polariton mechanism of the surface microstructuring of silicon by picosecond laser pulses [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 5. P. 62–67.

For citation (Journal of Optical Technology):

I. V. Guk, G. D. Shandybina, E. B. Yakovlev, and L. A. Golovan’, "The contribution of the polariton mechanism of the surface microstructuring of silicon by picosecond laser pulses," Journal of Optical Technology. 81(5), 275-279 (2014). https://doi.org/10.1364/JOT.81.000275

Abstract:

This paper discusses the experimental results of a study of the polariton mechanism of the microstructuring of silicon in the near-IR region when it is irradiated with picosecond laser pulses. The results are presented of a numerical model analysis of the excitation conditions of surface polaritons in a semiconductor when it is irradiated by a single picosecond pulse. It is determined that the polariton microstructuring mechanism of silicon has low probability when a picosecond laser pulse acts on it.

Keywords:

picosecond laser pulses, surface polaritons, surface laser microstructuring

Acknowledgements:

This work was carried out with the support of Grant NSh-1364.2014.2 of the President of the RF and Grant 12-02-01194-a of the Russian Foundation for Basic Research and with the state financial support of the leading universities of the Russian Federation (Subsidy 074-U01).

OCIS codes: 280.6680, 320.7120

References:

1. M. N. Libenson, Laser-Induced Optical and Thermal Processes in Condensed Media and Their Mutual Influence (Nauka, St. Petersburg, 2007).
2. T. Sarnet, J. Carey, and E. Mazur, “From black silicon to photovoltaic cells, using short-pulse lasers,” in International Symposium on High Power Laser Ablation, 2012, pp. 219–228.
3. E. V. Khaı˘dukov, O. D. Khramova, V. V. Rocheva, D. A. Zuev, O. A. Novodvorskiı˘, A. A. Lotin, L. S. Parshina, A. Yu. Poroı˘kov, M. A. Timofeev, and G. G. Untila, “Laser texturing of silicon to create solar cells,” Izv. Vyssh. Uchebn. Zaved. Prib. 54, No. 2, 26 (2011).
4. J. E. Carey, C. H. Crouch, and E. Mazur, “Femtosecond-laser-assisted microstructuring of silicon surfaces,” Opt. Photon. News. 14, No. 2, 32 (2003).
5. E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys. A 104, No. 2, 701 (2011).
6. J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci. 245, 102 (2005).

7. P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982).
8. X. Zhu, H. Zhu, D. Liu, Y. Huang, X. Wang, H. Yu, S. Wang, X. Lin, and P. Han, “Picosecond laser microstructuring for black silicon solar cells,” Adv. Mater. Res. 418–420, 217 (2012).
9. R. V. Dyukin, G. A. Martsinovskiy, O. N. Sergaeva, G. D. Shandybina, V. V. Svirina, and E. B. Yakovlev, “Interaction of femtosecond laser pulses with solids: electron/phonon/plasmon dynamics,” in Laser Pulses—Theory, Technology, and Applications, Igor Peshko, ed. (InTech, Rijeka, 2012), pp. 197–218.
10. R. V. Dyukin, G. A. Martsinovskiı˘, G. D. Shandybina, E. B. Yakovlev, I. D. Nikiforov, and I. V. Guk, “Dynamics of the permittivity of a semiconductor acted on by a femtosecond laser,” Opt. Zh. 78, No. 8, 118 (2011) [J. Opt. Technol. 78, 558 (2011)].
11. E. G. Gamaly, “The physics of ultra-short laser interactions with solid at non-relativistic intensities,” Phys. Rep. 508, 91 (2011).
12. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, The Action of High-Power Radiation on Metals (Nauka, Moscow, 1970).
13. Y. J. Liu, X. Ding, S.-C. S. Lin, J. Shi, I.-K. Chiang, and T. J. Huang, “Surface-acoustic-wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23, 1656 (2011).
14. G. Gorodetsky, J. Kanicki, T. Kazyaka, and R. L. Melcher, “Far-UV pulsed laser melting of silicon,” Appl. Phys. Lett. 46, 547 (1985).