УДК: 534.8, 544.032.65
Study of the optoacoustic response to the laser ablation of solids by the radiation of a fiber laser under a thin layer of liquid
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Вейко В.П., Самохвалов А.А. Исследование оптоакустического отклика при лазерной абляции твердых тел излучением волоконного лазера под тонким слоем жидкости // Оптический журнал. 2014. Т. 81. № 5. С. 88–92.
Veiko V.P., Samokhvalov A.A. Study of the optoacoustic response to the laser ablation of solids by the radiation of a fiber laser under a thin layer of liquid [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 5. P. 88–92.
V. P. Veĭko and A. A. Samokhvalov, "Study of the optoacoustic response to the laser ablation of solids by the radiation of a fiber laser under a thin layer of liquid," Journal of Optical Technology. 81(5), 294-297 (2014). https://doi.org/10.1364/JOT.81.000294
This paper discusses the characteristics of the optoacoustic response to the laser ablation of a steel target under a thin layer of liquid by the radiation of a pulsed fiber laser in the range of power densities 107–2×108 W/cm2. The dependence of the intensity of the principal peak (5.6 kHz) of the Fourier spectrum of the optoacoustic signal on the power density of the laser radiation is determined. It is established that the character of the growth of the acoustic signal amplitude substantially depends on the properties and conditions of the appearance of a near-surface plasma.
laser ablation, optoacoustic response, fiber laser, laser plasma, high-speed video recording
Acknowledgements:This work was carried out with state financial support of the leading universities of the Russian Federation (Subsidy 074-U01) and a grant of the President of the RF for the support of the leading scientific schools NSh 1364.2014.02.
OCIS codes: 350.3390, 110.5125
References:1. F. Bozon-Verduraz, R. Brayner, V. V. Voronov, N. A. Kirichenko, A. V. Simakin, and G. A. Shafeev, “Production of nanoparticles by laser-induced ablation of metals in liquids,” Kvant. Elektron. 33, 714 (2003) [Quantum Electron. 33, 714 (2003)].
2. P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domínguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 3, 236 (2006).
3. P. Schwaller, S. Zehnder, U. von Arx, and B. Neuenschwander, “A novel model for the mechanism of laser-induced back side wet etching in aqueous Cu solutions using ns pulses at 1064 nm,” Phys. Procedia 12, 188 (2011).
4. K. A. Naugol’nykh, “Converting an impact wave into an acoustic wave,” Akust. Zh. 18, 579 (1972).
5. Y. F. Lu, M. H. Hong, S. J. Chua, B. S. Teo, and T. S. Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys. 79, 2186 (1996).
6. J. M. Lee and K. G. Watkins, “In-process monitoring techniques for laser cleaning,” Opt. Lasers Eng. 34, 429 (2000).
7. M. Jankowska and G. Sliwinski, “Acoustic monitoring for the laser cleaning of sandstone,” J. Cultural Heritage 4, 65 (2003).
8. S. Conesa, S. Palanco, and J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochimica Acta Part B 59, 1395 (2004).
9. N. N. Bochkarev, A. M. Kabanov, and V. A. Pogodaev, “Optoacoustic channel for the propagation of powerful pulsed laser radiation in the atmosphere,” Opt. Atm. Okeana 16, 816 (2003).