УДК: 616.092.4, 628.978.3, 535.372
Optical-fiber spectrometer system for carrying out intraoperation studies
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Папаян Г.В., Журба В.М., Кишалов А.А., Галагудза М.М. Оптико-волоконная спектрометрическая система для проведения интраоперационных исследований // Оптический журнал. 2014. Т. 81. № 6. С. 43–47.
Papayan G.V., Zhurba V.M., Kishalov A.A., Galagudza M.M. Optical-fiber spectrometer system for carrying out intraoperation studies [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 6. P. 43–47.
G. V. Papayan, V. M. Zhurba, A. A. Kishalov, and M. M. Galagudza, "Optical-fiber spectrometer system for carrying out intraoperation studies," Journal of Optical Technology. 81(6), 334-337 (2014). https://doi.org/10.1364/JOT.81.000334
This paper describes a spectrometer system for carrying out intraoperation studies by the methods of fluorescence and reflection spectroscopy, including two specialized devices: for dynamic fixation of a fiber-optic probe on a functioning heart and automatic rinsing of blood from its surface. An example is given of using the system in fluorescence studies of experimental ischemia of the rat myocardium under in vivo conditions.
fluorescence spectroscopy, reflection spectroscopy, fluorescence diagnostics, autofluorescence
Acknowledgements:This work was carried out as part of the “Creation of a hardware–software complex for estimating the functional and metabolic status of tissues by means of fluorescence visualization,” State Specification of V. A. Almazov FGBU FTsSKÉ, Ministry of Health and Social Development of Russia, Registration No. 01201256254, fulfillment period 2012–14.
OCIS codes: 170.0170, 170.6280, 170.6510, 170.3880, 170.3880, 170.1610, 170.4580
References:1. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555 (1996).
2. G. V. Papayan, V. B. Berezin, N. N. Petrishchev, M. M. Galagudza, and K. Uk, “Spectrometer for fluorescence–reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].
3. G. V. Papayan, V. M. Zhurba, A. A. Kishalov, and M. M. Galagudza, “Fiber fluorescence–reflection spectrometer with multiwave excitation,” Opt. Zh. 81, No. 1, 45 (2014) [J. Opt. Technol. 81, 29 (2014)].
4. U. Utzinger and R. Richards-Kortum, “Fiber-optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121 (2003).
5. V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).
6. K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, “Intraoperative myocardial ischemia detection with laser-induced fluorescence,” J. Thorac. Cardiovasc. Surg. 107, 220 (1994).
7. M. Galagudza, I. O. Blokhin, A. A. Shmonin, and K. A. Mischenko, “Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets,” Cardiovasc. Hematol. Disord. Drug Targets 8, No. 1, 47 (2008).