УДК: 535.012.21, 535.016, 535.557
How the electric-field parameters affect the optical response of a nematic liquid crystal
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Галин И.Ф., Коншина Е.А. Влияние параметров электрического поля на оптический отклик нематического жидкого кристалла // Оптический журнал. 2014. Т. 81. № 6. С. 48–50.
Galin I.F., Konshina E.A. How the electric-field parameters affect the optical response of a nematic liquid crystal [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 6. P. 48–50.
I. F. Galin and E. A. Konshina, "How the electric-field parameters affect the optical response of a nematic liquid crystal," Journal of Optical Technology. 81(6), 338-340 (2014). https://doi.org/10.1364/JOT.81.000338
This paper discusses the dynamics of the optical response of a nematic liquid crystal with positive dielectric anisotropy for splay deformation of the layer and how it is affected by the shape of the electric-field oscillations. The efficiency of the action of sinusoidal, bipolar, and unipolar meanders with different frequencies and polarities is compared. It is shown that using a unipolar meander promotes a substantial acceleration of the liquid crystal’s optical response when the electrical signal is simultaneously reduced.
nematic liquid crystal, optical response, response rate
OCIS codes: 230.3720, 130.4815, 160.3710
References:1. L. P. Amosova, V. N. Vasil’ev, N. L. Ivanova, and E. A. Konshina, “Ways of increasing the response rate of electrically controlled optical devices based on nematic liquid crystals,” Opt. Zh. 77, No. 2, 3 (2010) [J. Opt. Technol. 77, 79 (2010)].
2. E. A. Konshina and M. A. Fedorov, “Effect of boundary conditions on phase modulation of light in a nematic liquid crystal featuring the S-effect,” Pis’ma Zh. Tekh. Fiz. 32, No. 22, 15 (2006) [Tech. Phys. Lett. 32, 964 (2006)].
3. V. N. Vasil’ev, E. A. Konshina, D. S. Kostomarov, M. A. Fedorov, L. P. Amosova, and E. O. Gavrish, “Influence of the alignment layer and the liquid-crystal layer thickness on the characteristics of electrically controlled optical modulators,” Pis’ma Zh. Tekh. Fiz. 35, No. 11, 33 (2009) [Tech. Phys. Lett. 35, 498 (2009)].
4. I. F. Galin and E. A. Konshina, “How the initial tilt angle of the director of a dual-frequency liquid crystal affects the electrooptic characteristics of cells,” Opt. Zh. 78, No. 6, 71 (2011) [J. Opt. Technol. 78, 400 (2011)].
5. I. F. Galin and E. A. Konshina, “Pretilt angle effect on response time of dual frequency liquid crystal,” Mol. Cryst. Liq. Cryst. 553, 21 (2012).
6. E. A. Konshina, M. A. Fedorov, L. P. Amosova, M. V. Isaev, and D. S. Kostomarov, “Optical transmission decay dynamics in dual-frequency nematic liquid crystal cells,” Pis’ma Zh. Tekh. Fiz. 34, No. 9, 87 (2008) [Tech. Phys. Lett. 34, 401 (2008)].
7. D. A. Vakulin and D. A. Frenkel’, Certificate for the state registration of computer program No. 2011615197 on 9/9/2011.
8. G. Barbero, A. K. Zvezdin, and L. R. Evangelista, “Ionic adsorption and equilibrium distribution of charges in a nematic cell,” Phys. Rev. E 59, 1846 (1999).
9. G. Barbero, A. M. Figueiredo Neto, F. C. M. Freire, and J. Le Digabel, “Relaxation time for the ionic current in a nematic cell under a large electric field,” Phys. Rev. E 74, 52701 (2006).
10. S. Biryukov, “Amplitude, mean, effective,” Zh. Radio No. 6, 58 (1999).