УДК: 621.373.826, 615.847.8
Phototherapeutic systems for the treatment of hyperbilirubinemia of newborns
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Плавский В.Ю., Третьякова А.И., Мостовникова Г.Р. Фототерапевтические системы для лечения гипербилирубинемии новорожденных детей // Оптический журнал. 2014. Т. 81. № 6. С. 51–62.
Plavskiy V.Yu., Tretiyakova A.I., Mostovnikova G.R. Phototherapeutic systems for the treatment of hyperbilirubinemia of newborns [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 6. P. 51–62.
V. Yu. Plavskiĭ, A. I. Tret’yakova, and G. R. Mostovnikova, "Phototherapeutic systems for the treatment of hyperbilirubinemia of newborns," Journal of Optical Technology. 81(6), 341-348 (2014). https://doi.org/10.1364/JOT.81.000341
This paper discusses the spectral and energetic characteristics of radiation sources used for the phototherapy of neonatal hyperbilirubinemia (jaundice of newborns). An estimate is given of the effectiveness of phototherapeutic systems based on fluorescent, metal-halogen, and halogen lamps in combination with their spectroenergetic characteristics. It is shown that, from the viewpoint of both increasing the effectiveness of the phototherapy and reducing unfavorable side effects, as well as increasing the operating reliability, the most promising radiation sources are superbright LEDs in the blue and blue–green regions.
phototherapy of neonatal hyperbilirubinemia, light emitting diodes, photoisomerization of bilirubin, lumirubin
OCIS codes: 170.1610, 170.3890, 230.3670, 260.5130
References:1. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia, “Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation,” Pediatrics 114, No. 1, 297 (2004).
2. V. Yu. Plavskii, “Biophysical and technical aspects of phototherapy for neonatal hyperbilirubinemia,” in Bilirubin: Chemistry, Regulation and Disorder, J. F. Novotny and F. Sedlacek, eds. (Nova Science Publishers, Inc., New York, 2012), pp. 1–65.
3. T. Xiong, Y. Qu, S. Cambier, and D. Mu, “The side effects of phototherapy for neonatal jaundice: What do we know? What should we do?” Eur. J. Pediatr. 170, 1247 (2011).
4. M. J. Maisels and A. F. McDonagh, “Phototherapy for neonatal jaundice,” N. Engl. J. Med. 358, 920 (2008).
5. V. Yu. Plavskiı˘, A. S. Stashevskiı˘, A. I. Tret’yakova, L. G. Plavskaya, and A. V. Mikulich, “Generation efficiency of singlet oxygen by bilirubin molecules,” in Collection of Materials of the Thirty-Eighth International Scientific–Practical Conference on the Use of Lasers in Medicine and Biology, Yalta, 3–6 October 2012 (Kharkov National University, Kharkov, 2012), pp. 168–169.
6. V. Yu. Plavskii, V. A. Mostovnikov, A. I. Tret’yakova, and G. R. Mostovnikova, “Sensitizing effect of Z,Z-bilirubin IX and its photoproducts on enzymes in model solutions,” J. Appl. Spectrosc. 75, 407 (2008).
7. V. A. Mostovnikov, G. R. Mostovnikova, and V. Y. Plavski, “Spectral and photochemical parameters, which define laser phototherapy hyperbilirubinemia of newborn higher efficacy,” Proc. SPIE 2370, 558 (1994).
8. G. R. Mostovnikova, V. A. Mostovnikov, V. Yu. Plavskiı˘, A. I. Tret’yakova, S. P. Andreev, and A. B. Ryabtsev, “Phototherapeutic apparatus based on an argon laser for the treatment of hyperbilirubinemia in newborns,” Opt. Zh. 67, No. 11, 60 (2000) [J. Opt. Technol. 67, 981 (2000)].
9. K. L. Tan, “The pattern of bilirubin response to phototherapy for neonatal hyperbilirubinaemia,” Pediatr. Res. 16, 670 (1982).
10. Fetus and Newborn Committee, Canadian Paediatric Society, “Use of phototherapy for neonatal hyperbilirubinemia,” Can. Med. Assoc. J. 134, 1237 (1986).
11. A. F. McDonagh, G. Agati, F. Fusi, and R. Pratesi, “Quantum yields for laser photocyclization of bilirubin in the presence of human serum albumin. Dependence of quantum yield on excitation wavelength,” Photochem. Photobiol. 50, 305 (1989).
12. J. F. Ennever and T. J. Dresing, “Quantum yields for the cyclization and configurational isomerization of 4E, 15Z-bilirubin,” Photochem. Photobiol. 53, 25 (1991).
13. V. Yu. Plavskiı˘, V. A. Mostovnikov, A. I. Tret’yakova, and G. R. Mostovnikova, “Photophysical processes that determine the photoisomerization selectivity of Z,Z-bilirubin IXα in complexes with albumins,” Opt. Zh. 74, No. 7, 11 (2007) [J. Opt. Technol. 74, 446 (2007)].
14. V. Yu. Plavskii, V. A. Mostovnikov, G. R. Mostovnikova, and A. I. Tret’yakova, “Spectral fluorescence and polarization characteristics of Z, Z-bilirubin IXα,” J. Appl. Spectrosc. 74, 120 (2007).
15. K. L. Tan, “Efficacy of fluorescent daylight, blue and green lamps in the management of non-hemolytic hyperbilirubinemia,” J. Pediatr. 114, 132 (1989).
16. F. Ebbesen, P. Madsen, S. Støvring, H. Hundborg, and G. Agati, “Therapeutic effect of turquoise versus blue light with equal irradiance in preterm infants with jaundice,” Acta Paediatr. 96, 837 (2007).
17. Z. Csoma, P. Hencz, H. Orvos, L. Kemeny, A. Dobozy, E. Dosa-Racz, Z. Erdei, D. Bartusek, and J. Olah, “Neonatal blue-light phototherapy could increase the risk of dysplastic nevus development,” Pediatrics 119, 1269 (2007).
18. E. Matichard, A. L. Hénanff, A. Sanders, J. Leguyadec, B. Crickx, and V. Descamps, “Effect of neonatal phototherapy on melanocytic nevus count in children,” Arch. Dermatol. 142, 1599 (2006).
19. A. Kurt, A. D. Aygun, A. N. C. Kurt, A. Godekmerdan, S. Akarsu, and E. Yilmaz, “Use of phototherapy for neonatal hyperbilirubinemia affects cytokine production and lymphocyte subsets,” Neonatology 95, 262 (2009).
20. D. J. Grunhagen, M. G. De Boer, A. J. De Beaufort, and F. J. Walther, “Transepidermal water loss during halogen spotlight phototherapy in preterm infants,” Pediatr. Res. 51, 402 (2002).
21. A. Aycicek, A. Kocyigit, O. Erel, and H. Senturk, “Phototherapy causes DNA damage in peripheral mononuclear leukocytes in term infants,” J. Pediatr. (Rio J.) 84, 141 (2008).
22. G. R. Mostovnikova, K. U. Vil’chuk, A. B. Ryabtsev, A. V. Mostovnikov, T. V. Gned’ko, I. A. Leusenko, V. A. Mostovnikov, and V. Yu. Plavskiı˘, “The use of superbright LEDs for increasing the efficiency of phototherapy of hyperbilirubinemia (jaundice) in newborns,” in Collection of Scientific Papers of the Seventh International Conference on Laser Physics and Optical Technologies, 17–19 June 2008 (Institut Fiziki NAN Belarusi, Minsk, 2008), vol. 2, pp. 443–447.
23. V. K. Bhutani and the American Academy of Pediatrics Committee on Fetus and Newborn, “Phototherapy to prevent severe neonatal hyperbilirubinemia in the newborn infant 35 or more weeks of gestation,” Pediatrics 128, 1046 (2011).
24. K. Tanaka, H. Hashimoto, T. Tachibana, H. Ishikawa, and T. Ohki, “Apoptosis in the small intestine of neonatal rat using blue light-emitting diode devices and conventional halogen-quartz devices in phototherapy,” Pediatr. Surg. Int. 24, 837 (2008).
25. G. Bertini, S. Perugi, S. Elia, S. Pratesi, C. Dani, and F. F. Rubaltelli, “Transepidermal water loss and cerebral hemodynamics in preterm infants: conventional versus LED phototherapy,” Eur. J. Pediatr. 167, 37 (2008).
26. D. S. Seidman, J. Moise, Z. Ergaz, A. Laor, H. J. Vreman, D. K. Stevenson, and R. Gale, “A prospective randomized controlled study of phototherapy using blue and blue-green light-emitting devices, and conventional halogenquartz phototherapy,” J. Perinatol. 23, 123 (2003).
27. C. Tayman, M. M. Tatli, S. Aydemir, and A. Karadag, “Overhead is superior to underneath light-emitting diode phototherapy in the treatment of neonatal jaundice: a comparative study,” J. Paediatr. Child Health 46, 234 (2010).
28. S. Subramanian, M. J. Sankar, A. K. Deorari, T. Velpandian, P. Kannan, G. V. Prakash, R. Agarwal, and V. K. Paul, “Evaluation of phototherapy devices used for neonatal hyperbilirubinemia,” Indian Pediatr. 48, 689 (2011).
29. D. S. Seidman, J. Moise, Z. Ergaz, A. Laor, H. J. Vreman, D. K. Stevenson, and R. Gale, “A new blue light-emitting phototherapy device: a prospective randomized controlled study,” J Pediatr. 136, 771 (2000).
30. M. J. Maisels, E. A. Kring, and J. DeRidder, “Randomized controlled trial of light-emitting diode phototherapy,” J. Perinatol. 27, 565 (2007).
31. P. Kumar, S. Murki, G. K. Malik, D. Chawla, A. K. Deorari, N. Karthi, S. Subramanian, J. Sravanthi, P. Gaddam, and S. N. Singh, “Light-emitting diodes versus compact fluorescent tubes for phototherapy in neonatal jaundice: a multicenter randomized controlled trial,” Indian Pediatr. 47, 131 (2010).
32. P. Kumar, D. Chawla, and A. Deorari, “Light-emitting diode phototherapy for unconjugated hyperbilirubinaemia in neonates,” Cochrane Database Syst. Rev. No. 12 (2011).
33. A. Tridente and D. De Luca, “Efficacy of light-emitting diode versus other light sources for treatment of neonatal hyperbilirubinemia: a systematic review and meta-analysis,” Acta Paediatr. 101, 458 (2012).
34. B. M. Martins, M. de Carvalho, M. E. Moreira, and J. M. Lopes, “Efficacy of new microprocessed phototherapy system with five high-intensity light-emitting diodes (Super LED),” J. Pediatr. (Rio J.) 83, 253 (2007).
35. B. S. Karagol, O. Erdeve, B. Atasay, and S. Arsan, “Efficacy of light emitting diode phototherapy in comparison to conventional phototherapy in neonatal jaundice,” Ankara Üniversitesi Tip Fakültesi Mecmuasi 60, No. 1, 31 (2007).
36. N. Uras, A. Karadag, A. Tonbul, M. Karabel, G. Dogan, and M. M. Tatli, “Comparison of light-emitting diode phototherapy and double standard conventional phototherapy for nonhemolytic neonatal hyperbilirubinemia,” Turk. J. Med. Sci. 39, 337 (2009).
37. P. K. Vandborg, B. M. Hansen, G. Greisen, and F. Ebbesen, “Dose-response relationship of phototherapy for hyperbilirubinemia,” Pediatrics 130, 352 (2012).