УДК: 535.36
Rayleigh approximation for light scattering at parallelepipeds
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Фарафонов В.Г., Ильин В.Б. Приближение Рэлея для светорассеяния на параллелепипедах // Оптический журнал. 2014. Т. 81. № 7. С. 17–25.
Farafonov V.G., Iliin V.B. Rayleigh approximation for light scattering at parallelepipeds [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 7. P. 17–25.
V. G. Farafonov and V. B. Il’in, "Rayleigh approximation for light scattering at parallelepipeds," Journal of Optical Technology. 81(7), 375-381 (2014). https://doi.org/10.1364/JOT.81.000375
This paper discusses the Rayleigh approximation and solves the corresponding electrostatic problem for a nonspherical particle of virtually arbitrary (starlike) shape, using an analog of the expanded-boundary-condition method. The essence of the recently proposed uniform-internal-field approximation, which gives approximating relationships for the Rayleigh approximation, is explained. Simple analytical expressions for the polarizability and other optical characteristics of small rectangular parallelepipeds are given in terms of the uniform-internal-field approximation. The results of numerical calculations of the absorption and scattering cross sections of light by such particles obtained from these approximate formulas and by the exact discrete-dipole method showed good agreement, especially for averaged cross sections in the case of unpolarized light or ensembles of randomly oriented parallelepipeds.
light-scattering theory, electrostatic approximation
Acknowledgements:This work was carried out with the financial support of the Ministry of Education and Science of Russia in the framework of the basic part of State Program GUAP in 2013–14, the Russian Foundation for Basic Research (13-02-00138a), and the St. Petersburg State University (6.0.122.2010, 6.38.669.2013).
OCIS codes: 290.5825, 290.5870
References:1. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957; Inostr. Lit., Moscow, 1961).
2. C. F. Bohren and D. E. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).
3. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostr. Lit., Moscow, 1958).
4. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon Press, Oxford, 1960).
5. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).
6. A. Sihvola, J. Venermo, and P. Ylä-Oijala, “Dielectric response of matter with cubic and cylindrical microstructure,” Microw. Opt. Technol. Lett. 41, 245 (2004).
7. V. G. Farafonov, “Light scattering by multilayer ellipsoids in the Rayleigh approximation,” Opt. Spektrosk. 88, 492 (2000) [Opt. Spectrosc. 88, 441 (2000)].
8. V. G. Farafonov, “Light scattering by multilayer nonconfocal ellipsoids in the Rayleigh approximation,” Opt. Spektrosk. 90, 646 (2001) [Opt. Spectrosc. 90, 574 (2001)].
9. V. G. Farafonov, V. B. Il’in, A. A. Vinokurov, and S. V. Barkanov, “Light scattering by small axisymmetric particles using a generalized method of separation of variables with a spherical basis,” Opt. Zh. 78, No. 8, 100 (2011) [J. Opt. Technol. 78, 544 (2011)].
10. V. G. Farafonov, A. A. Vinokurov, and S. V. Barkanov, “Electrostatic solution and Rayleigh approximation for small nonspherical particles in a spheroidal basis,” Opt. Spektrosk. 111, 1026 (2011) [Opt. Spectrosc. 111, 980 (2011)].
11. V. G. Farafonov and M. V. Sokolovskaya, “Construction of the Rayleigh approximation for axisymmetric multilayered particles, making use of eigenfunctions of the Laplace operator,” J. Math. Sci. 194, 104 (2013).
12. V. G. Farafonov and V. B. Il’in, “Scattering of light by axially symmetric particles: modification of the point-matching method,” Opt. Spektrosk. 100, 480 (2006) [Opt. Spectrosc. 100, 437 (2006)].
13. V. G. Farafonov, V. B. Il’in, and A. A. Vinokurov, “Near- and far-field light scattering by nonspherical particles: applicability of methods that involve a spherical basis,” Opt. Spektrosk. 109, 476 (2010) [Opt. Spectrosc. 109, 432 (2010)].
14. V. G. Farafonov, A. A. Vinokurov, and V. B. Il’in, “Comparison of the light scattering methods using the spherical basis,” Opt. Spektrosk. 102, 1006 (2007) [Opt. Spectrosc. 102, 927 (2007)].
15. V. G. Farafonov and V. B. Il’in, “Single light scattering: computational methods,” in Light Scattering Reviews, A. A. Kokhanovsky, ed. (Springer, Berlin, 2006), pp. 125–177.
16. P. C. Waterman, “Matrix method in potential theory and electromagnetic scattering,” J. Appl. Phys. 50, 4550 (1979).
17. V. G. Farafonov and V. B. Il’in, “On scattering of light by small axially symmetric particles,” Opt. Spektrosk. 111, 863 (2011) [Opt. Spectrosc. 111, 824 (2011)].
18. V. B. Il’in and V. G. Fafaronov, “Rayleigh approximation for axisymmetric scatterers,” Opt. Lett. 36, 4080 (2011).
19. Lord Rayleigh, “On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids,” Philos. Mag. 44, No. 5, 28 (1897).
20. R. E. Kleinman and T. B. A. Senior, “Rayleigh scattering,” in Low and High-Frequency Asymptotics, V. K. Varadan and V. V. Varadan, ed. (Elsevier, Amsterdam, 1986), pp. 1–70.
21. A. G. Ramm, Wave Scattering by Small Bodies of Arbitrary Shapes (World Scientific Publ., Singapore, 2005).
22. V. G. Farafonov, “Light scattering by dielectric particles with axial symmetry. 1,” Opt. Spektrosk. 88, 70 (2000) [Opt. Spectrosc. 88, 63 (2000)].
23. V. G. Farafonov, “Applicability of the T-matrix method and its modifications,” Opt. Spektrosk. 92, 813 (2002) [Opt. Spectrosc. 92, 748 (2002)].
24. D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1983; Mir, Moscow, 1987).
25. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106, No. 1, 546 (2007).