УДК: 535.399
The effect of ions of rare-earth metals on the temperature dependence of the luminescence of molecular clusters of silver in oxyfluoride glasses
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Агафонова Д.С., Колобкова Е.В., Никоноров Н.В., Сидоров А.И. Влияние ионов редкоземельных металлов на температурную зависимость люминесценции молекулярных кластеров серебра в оксифторидных стеклах // Оптический журнал. 2014. Т. 81. № 7. С. 59–66.
Agafonova D.S., Kolobkova E.V., Nikonorov N.V., Sidorov A.I. The effect of ions of rare-earth metals on the temperature dependence of the luminescence of molecular clusters of silver in oxyfluoride glasses [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 7. P. 59–66.
D. S. Arafonova, A. I. Sidorov, E. V. Kolobkova, and N. V. Nikonorov, "The effect of ions of rare-earth metals on the temperature dependence of the luminescence of molecular clusters of silver in oxyfluoride glasses," Journal of Optical Technology. 81(7), 408-413 (2014). https://doi.org/10.1364/JOT.81.000408
The influence of temperature on the spectral composition and luminescence intensity of oxyfluoride glasses containing molecular clusters of silver and ions of the rare-earth metals samarium and terbium has been investigated. It is shown that introducing these ions into the composition of the glass increases the luminescence intensity of the molecular clusters of silver and the temperature sensitivity of their luminescence intensity. In oxyfluoride glass with molecular clusters of silver and Tb3+ ions, the overall luminescence intensity in the 20°C–250°C temperature range is attenuated by a factor of 50. It is shown that molecular clusters of silver are characterized by temperature sensitivity of the luminescence intensity in the range 0.045–0.099 dB/°C.
luminescence, molecular cluster, rare-earth metals, oxyfluoride glass, thermal quenching of luminescence
Acknowledgements:This work was carried out with state financial support of the leading universities of the Russian Federation (Subsidy 074-U01), as well as with grants for graduate students and young scientists KÉOP-43 (St. Petersburg State Electrical Engineering University).
OCIS codes: 160.2540, 160.5690, 280.4788
References:1. M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19, 2045 (2009).
2. A. I. Ignat’ev, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, “Influence of UV irradiation and heat treatment on the luminescence of molecular silver clusters in photothermorefractive glasses,” Opt. Spektrosk. 114, 838 (2013) [Opt. Spectrosc. 114, 769 (2013)].
3. D. S. Agafonova, V. I. Egorov, A. I. Ignat’ev, and A. I. Sidorov, “The effect of temperature on the luminescence of molecular clusters of silver in photothermorefractive glasses,” Opt. Zh. 80, No. 8, 51 (2013) [J. Opt. Technol. 80, 506 (2013)].
4. N. T. Cuong, V. K. Tikhomirov, L. F. Chibotaru, A. Stesmans, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Experiment and theoretical modeling of the luminescence of silver nanoclusters dispersed in oxyfluoride glass,” J. Chem. Phys. 136, 174108 (2012).
5. G. A. Ozin and F. Hugues, “Silver atoms and small silver clusters stabilized in zeolite Y: optical spectroscopy,” J. Phys. Chem. 87, 94 (1983).
6. L. Y. Zhong, W. W. Tao, and C. Wei, “Copper nanoclusters: synthesis, characterization and properties,” Chin. Sci. Bull. 57, 41 (2012).
7. Y. Molard, F. Dorson, and K. A. Brylev, “Red-NIR luminescent hybrid poly(methyl methacrylate) containing covalently linked octahedral rhenium metallic clusters,” Chem. Eur. J. 16, 5613 (2010).
8. A. S. Kuznetsov, V. K. Tikhomirov, and V. V. Moshchalnikov, “Polarization memory of white luminescence of Ag nanoclusters dispersed in glass host,” Opt. Express 20, 21576 (2012).
9. N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiı˘, and T. A. Shakhverdov, “Broadband copper luminescence in potassium–aluminum borate glasses,” Opt. Spektrosk. 114, 417 (2013) [Opt. Spectrosc. 114, 373 (2013)].
10. C. Felix, C. Sieber, and W. Harbich, “Fluorescence and excitation spectra of Ag4 in an argon matrix,” Chem. Phys. Lett. 313, No. 1, 105 (1999).
11. W. Zheng and T. Kurobori, “Assignments and optical properties of X-ray-induced colour centres in blue and orange radiophotoluminescent silver-activated glasses,” J. Lumin. 131, 36 (2011).
12. E. V. Kolobkova, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, “Luminescence of molecular silver clusters in oxyfluoride glasses,” Opt. Spektrosk. 114, 260 (2013) [Opt. Spectrosc. 114, 236 (2013)].
13. A. Banerjee, T. Ghanty, and A. Chakrabarti, “Nonlinear optical properties of Au 19M (M = Li, Na, K, Rb, Cs, Cu, Ag) clusters,” J. Phys. Chem. C 116, No. 1, 193 (2012).
14. A. S. Kuznetsov, J. J. Velázquez, V. K. Tikhomirov, J. Mendez-Ramos, and V. V. Moshchalkov, “Quantum yield of luminescence of Ag nanoclusters dispersed within transparent bulk glass vs. glass composition and temperature,” Appl. Phys. Lett. 101, 251106 (2012).
15. V. P. Afanas’ev, V. N. Vasil’ev, A. I. Ignat’ev, E. V. Kolobkova, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskiı˘, “New luminescent glasses and prospects of using them in solar energy,” Opt. Zh. 80, No. 10, 69 (2013) [J. Opt. Technol. 80, 635 (2013)].
16. A. S. Kuznetsov, V. K. Tikhomirov, and V. V. Moshchalkov, “UV-driven efficient white light generation by Ag nanoclusters dispersed in glass host,” Mater. Lett. 92, 4 (2013).
17. J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy-level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20, 13582 (2012).
18. V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2 O3 :Er3+–Eu3+–Yb 3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113, 083104 (2013).
19. Z. Y. Zhang, T. V. Grattan, A. W. Palmer, and B. T. Meggitt, “Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000°C,” Rev. Sci. Instrum. 68, 2759 (1997).