ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.514, 532.783, 535.36

Polarizing properties of a stretched film of a polymer-dispersed liquid crystal with a surfactant dopant

For Russian citation (Opticheskii Zhurnal):

Эгамов М.Х., Герасимов В.П., Крахалев М.Н., Прищепа О.О., Лойко В.А., Зырянов В.Я. Поляризующие свойства вытянутой пленки капсулированного полимером жидкого кристалла с примесью сурфактанта // Оптический журнал. 2014. Т. 81. № 7. С. 67–71.

 

Egamov M.Kh., Gerasimov V.P., Krakhalev M.N., Prishchepa O.O., Loiko V.A., Zyryanov V.Ya. Polarizing properties of a stretched film of a polymer-dispersed liquid crystal with a surfactant dopant [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 7. P. 67–71.

For citation (Journal of Optical Technology):

M. H. Egamov, V. P. Gerasimov, M. N. Krakhalev, O. O. Prishchepa, V. Ya. Zyryanov, and V. A. Loiko, "Polarizing properties of a stretched film of a polymer-dispersed liquid crystal with a surfactant dopant," Journal of Optical Technology. 81(7), 414-417 (2014). https://doi.org/10.1364/JOT.81.000414

Abstract:

The transmittance anisotropy of a composite polymer–liquid-crystal film has been studied as it varies with the degree to which it is elongated. The composite film includes polyvinyl alcohol, the nematic liquid crystal 4-n-pentyl-4′-cyanobiphenyl, and the surfeiting cetyltrimethylammonium bromide, which initiates homeotropic adhesion of the nematic to the surface of the polymer. It is shown that, when the film is uniaxially stretched, the transmittance of the orthogonally polarized component of directly transmitted radiation and accordingly the degree of polarization abruptly increase, reaching saturation when it is stretched to twice its length. Such variation of the film’s macroscopic optical properties can be caused by an orientational–structural transition to a homogeneous configuration of the director in deformed droplets of the nematic and makes it possible to substantially improve the optical characteristics of light polarizers based on such composite media.

Keywords:

optical anisotropy, light polarization, polymer-dispersed liquid crystal, configuration of the director, surfactant, light scattering

Acknowledgements:

This work was carried out with the partial support of Grant 12-03-00816 of the Russian Foundation for Basic Research, Grants 24.32 and 24.29 of the Presidium of the Russian Academy of Sciences, and joint project 30 of the Siberian Section of the Russian Academy of Sciences (SO RAN), and a joint project of the SO RAN and the National Scientific Council of Taiwan.

OCIS codes: 260.5430, 160.3710

References:

1. W. A. Shurcliff, Polarized Light: Production and Use (Harvard University, Cambridge, Massachusetts, 1962; Mir, Moscow, 1965).
2. E. F. Ishchenko and A. L. Sokolov, Polarization Optics (MÉI, Moscow, 2005).

3. A. S. Sonin and I. N. Shibaev, “Structural ordering and properties of cholesteric pseudo-encapsulated films,” Zh. Fiz. Khim. 55, 1263 (1981).
4. J. L. West, J. W. Doane, and S. Zumer, “Liquid-crystal display material comprising a liquid-crystal dispersion in a thermoplastic resin,” U.S. Patent 4,685,771, Int.Cl. G02F 1/13 (8/11/1987).
5. G. E. Volovik and O. D. Lavrentovich, “Topological dynamics of defects: boojums in nematic drops,” Zh. Eksp. Teor. Fiz. 85, 1997 (1983) [Sov. Phys. JETP 58, 1159 (1983)].
6. V. Ya. Zyryanov, S. L. Smorgon, and V. F. Shabanov, “Elongated films of polymer-dispersed liquid crystals as scattering polarizers,” Mol. Eng. 1, 305 (1992).
7. V. G. Nazarov, A. M. Parshin, A. V. Gunyakov, V. Ya. Zyryanov, and V. F. Shabanov, “Optical anisotropy of uniaxially oriented films of polymerencapsulated liquid crystals,” Opt. Zh. 72, No. 9, 28 (2005) [J. Opt. Technol. 72, 675 (2005)].
8. V. Ya. Zyryanov and V. Sh. Épshteı˘n, “Measuring the refractive indices of a liquid crystal using a tunable source of coherent IR radiation,” Prib. Tekh. Eksp. No. 2, 164 (1987).
9. A. F. Nikolaev, Synthetic Polymers and Plastics Based on Them (Khimiya, Leningrad, 1966).
10. Zh. Kon’yar, Orientation of Nematic Liquid Crystals and Mixtures of Them (Universitetskoe Izd., Minsk, 1986).
11. J. E. Proust, L. Ter-Minassian-Saraga, and E. Guyon, “Orientation of a nematic liquid crystal by suitable boundary surfaces,” Solid State Commun. 11, 1227 (1972).
12. O. O. Prishchepa, M. Kh. Égamov, V. P. Gerasimov, M. N. Krakhalev, and V. A. Loı˘ko, “Light polarizers based on polymer–LC–surfactant composites films as anisotropic scattering media,” Izv. Vyssh. Uchebn. Zaved. Fiz. 56, No. 2/2, 258 (2013).
13. V. Ya. Zyryanov, V. V. Presnyakov, S. L. Smorgon, and V. F. Shabanov, “Electrooptic properties and orientational–structural transformations in an ensemble of ellipsoidal drops of cholesterics,” Dokl. Ross. Akad. Nauk 354, No. 2, 178 (1997) [Phys.–Dokl. 42, 235 (1997)].
14. V. V. Presnyakov, S. L. Smorgon, V. Ya. Zyryanov, and V. F. Shabanov, “Volt-contrast curve anisotropy in planar-oriented PDChLC films,” Mol. Cryst. Liq. Cryst. 321, 259 (1998).
15. O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A. M. Parshin, and V. G. Nazarov, “Friedericksz threshold field in bipolar nematic droplets with strong surface anchoring,” Pis’ma Zh. Eksp. Teor. Fiz. 84, 723 (2006) [JETP Lett. 84, 607 (2006)].
16. O. O. Prishchepa, A. M. Parshin, A. V. Shabanov, and V. Ya. Zyryanov, “Magnetooptical study of Friedericksz threshold in polymer-dispersed nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 488, 309 (2008).