ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 533.9:546.295

Stimulated emission of inert-gas excimers in the vacuum ultraviolet

For Russian citation (Opticheskii Zhurnal):

Герасимов Г.Н. Стимулированное излучение эксимеров инертных газов в вакуумном ультрафиолете // Оптический журнал. 2014. Т. 81. № 7. С. 7–16.

 

Gerasimov G.N. Stimulated emission of inert-gas excimers in the vacuum ultraviolet [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 7. P. 7–16.

For citation (Journal of Optical Technology):

G. N. Gerasimov, "Stimulated emission of inert-gas excimers in the vacuum ultraviolet," Journal of Optical Technology. 81(7), 368-374 (2014). https://doi.org/10.1364/JOT.81.000368

Abstract:

An inert-gas plasma with molecular transitions Σ1,3u+−Σ1g+ is one of the main active media for generating stimulated vacuum UV radiation. Experiments with heavy inert gases pumped with a pulsed electron beam, carried out in the early 1970s, proved that such generation is possible in principle. It was also established that lasing cannot be obtained in the continuous regime because of the large width of the spectrum to be amplified. This publication proposes an efficient mechanism for generating stimulated vacuum UV radiation in the indicated media, including in the continuous regime. The proposed mechanism explains the conflicting results of earlier experiments in the pulsed and continuous regimes.

Keywords:

stimulated emission, vacuum UV, excimer molecules, inert gases

OCIS codes: 260.0260, 270.0270, 330.0330

References:

1. N. G. Basov, V. A. Danilychev, Yu. M. Popov, and D. D. Khodkevich, “Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam,” Pis’ma Zh. Eksp. Teor. Fiz. 12, 473 (1970) [JETP Lett. 12, 329 (1970)].
2. H. A. Koehler, L. J. Ferderber, D. L. Redhead, and P. J. Ebert, “Stimulated emission in high-pressure xenon excited by high-current relativistic electron beams,” Appl. Phys. Lett. 21, 198 (1972).
3. H. A. Koehler, L. J. Ferderber, D. L. Redhead, and P. J. Ebert, “Vacuum-ultraviolet emission from high-pressure xenon and argon excited by high-current relativistic electron beams,” Phys. Rev. 9, 768 (1974).
4. F. G. Houtermans, “Uber Massen-Wirkung im optischen Spektralgebiet und die Moglichkeit absolut negativ Absorption fur einige Falle von Molekulspektren (Licht-Lawine),” Helv. Phys. Acta 33, 933 (1960).
5. O. Zvelto, Principles of Lasers (Plenum, New York, 1995).
6. V. F. Tarasenko and S. I. Yakovlenko, “Rare-gas dimer and halide lasers,” Kvant. Elektron. (Moscow) 24, 1145 (1997) [Quantum Electron. 27, 1111 (1997)].
7. W. Sasaki, T. Shirai, S. Kubodera, J. Kawanaka, and T. Igarashi, “Observation of vacuum-ultraviolet Kr 2* laser oscillation pumped by a compact discharge device,” Opt. Lett. 26, 503 (2001).
8. T. Higashiguchi, S. Mokuo, T. Shirai, C. Rajyaguru, W. Sasaki, and S. Kubodera, “Dynamic of the discharge-pumped vacuum ultraviolet Kr 2* laser,” IEEE J. Sel. Top. Quantum Electron. 10, 1293 (2004).
9. O. A. Zakharenko, A. A. Kuznetsov, V. N. Slinko, and S. S. Sulakshin, “Experimental investigation of VUV emission from Kr and Xe rare gases in a high-power high-pressure pulsed microwave discharge,” Kvant. Elektron. (Moscow) 17, 891 (1990) [Sov. J. Quantum Electron. 20, 813 (1990)].
10. A. M. Prokhorov, ed., Laser Handbook, vol. 1 (Sovetskoe Radio, Moscow, 1978).
11. N. P. Barnes and J. C. Barnes, “Injection seeding 1: theory,” IEEE J. Quantum Electron. 29, 2670 (1993).
12. N. S. Krylov and V. A. Fok, “On the two basic interpretations of the relationship of the energy–time uncertainty,” Zh. Eksp. Teor. Fiz. 17, 93 (1947).
13. V. A. Fok, The Origin of Quantum Mechanics (Nauka, Moscow, 1976).
14. G. Gerasimov, “Excimer media gain,” Spectrosc. Lett. 34, 191 (2001).
15. G. N. Gerasimov, R. Hallin, M. N. Maleshin, F. Kheijkenskjold, T. Kuhn, and P. Sundber, “Radiation amplification by a hydrogen plasma,” Opt. Spektrosk. 92, 521 (2002) [Opt. Spectrosc. 92, 475 (2002)].
16. G. N. Gerasimov, “Generating narrow-band vacuum UV radiation by the injection-seeding method,” Opt. Zh. 76, No. 6, 75 (2009) [J. Opt. Technol. 76, 377 (2009)].

17. E. W. McDaniel and W. L. Nigham, eds., Gas Lasers (Academic, New York, 1982; Mir, Moscow, 1986).
18. I. J. Bigio and M. Slatkine, “Attainment of the theoretical minimum input power for injection locking of an unstable resonator KrF laser,” Opt. Lett. 7, 336 (1981).
19. I. J. Bigio and M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. 19, 1426 (1983).
20. T. Eftimiopoulos, B. P. Stoicheff, and R. I. Thompson, “Efficient population inversion in excimer states by supersonic expansion of discharge plasmas,” Opt. Lett. 14, 624 (1989).
21. T. Eftimiopoulos and B. P. Stoicheff, “Argon excimer spectra in pulsed discharges with supersonic expansion,” IEEE J. Quantum Electron. 28, 1439 (1992).
22. J. E. Tucker, M. F. Masters, B. L. Wexler, and S. K. Searles, “Ar 2 excimer spectra excited in pulsed discharges with supersonic expansion,” Opt. Lett. 17, 288 (1992).
23. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1950).
24. O. Cheshnovsky, B. Raz, and J. Jortner, “Electronic energy transfer in rare-gas mixtures,” J. Chem. Phys. 59, 3301 (1973).
25. J. D. Cook and P. K. Leichner, “Collisional and radiative excitation transfers in Kr–Xe mixtures: quenching of Kr,” Phys. Rev. A 31, 90 (1985).
26. J. D. Cook and P. K. Leichner, “Collisional and radiative excitation transfers in Kr–Xe mixtures: emission from the Xe (3 P 1 ) resonant level and the Xe first continuum region,” Phys. Rev. A 43, 1614 (1991).
27. Y. Salamero, A. Birot, H. Brunet, H. Dijols, J. Caly, P. Millet, and J. P. Montagne, “Energy transfer kinetics of the VUV emissions for Kr–Xe mixtures,” J. Chem. Phys. 74, 288 (1981).
28. B. Krylov, G. Gerasimov, A. Morozov, A. Arnesen, R. Hallin, and F. Heijkenskjold, “Energy-transfer studies in krypton–xenon mixtures excited in a cooled dc discharge,” Eur. Phys. J. D 8, 227 (2000).
29. G. N. Gerasimov, B. E. Krylov, R. Hallin, and A. Arnesen, “Parameters of VUV radiation from a DC capillary discharge in a mixture of krypton with xenon,” Opt. Spektrosk. 100, 896 (2006) [Opt. Spectrosc. 100, 825 (2006)].
30. B. Jansik, B. Schimmelpfennig, and H. Agren, “Relativistic study of VUV radiation from Kr–Xe gas mixtures,” Phys. Rev. A 67, 042501 (2003).