УДК: 530.145
How scatter of the experimental parameters affects the statistical characteristics of a quantum random-number generator
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Иванова А.Е., Чивилихин С.А., Мирошниченко Г.П., Егоров В.И., Глейм А.В. Влияние разброса параметров эксперимента на статистические характеристики квантового генератора случайных чисел // Оптический журнал. 2014. Т. 81. № 8. С. 10–13.
Ivanova A.E., Chivilikhin S.A., Miroshnichenko G.P., Egorov V.I., Gleim A.V. How scatter of the experimental parameters affects the statistical characteristics of a quantum random-number generator [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 8. P. 10–13.
A. E. Ivanova, S. A. Chivilikhin, G. P. Miroshnichenko, V. I. Egorov, and A. V. Gleĭm, "How scatter of the experimental parameters affects the statistical characteristics of a quantum random-number generator," Journal of Optical Technology. 81(8), 427-430 (2014). https://doi.org/10.1364/JOT.81.000427
Quantum generation of random numbers makes it possible to obtain truly random numbers that can be used in applications where a high degree of randomness is needed. This paper presents an estimate of how the nonideal nature of the setup parameters affects the results of measurements carried out for two quantum random-number generators: one based on separation of laser radiation, and one based on the use of vacuum fluctuations.
generation of random numbers, beamsplitter, homodyne detection
Acknowledgements:This work was carried out with state financial support of the leading universities of the Russian Federation (Subsidy 074-U01, Project 14.Z50.31.0031).
OCIS codes: 270.0270, 270.5290, 270.5565
References:1. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenahus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
2. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random-bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18, 18763 (2010).
3. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random-number generator,” Rev. Sci. Instrum. 71, 1675 (2000).
4. O. Kwon, Y.-W. Cho, and Y.-H. Kim, “Quantum random-number generator using photon-number path entanglement,” Appl. Opt. 48, 1774 (2009).
5. M. Stipˇcevi´c and M. B. Rogina, “Quantum random-number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
6. B. Qi, Y.-M. Chi, H.-K. Lo, and L. Qian, “High-speed quantum random-number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35, 312 (2010).
7. A. E. Ivanova, V. I. Egorov, S. A. Chivilikhin, and A. V. Gleim, “Investigation of quantum random-number generation based on space–time division of photons,” Nanosyst. Phys. Chem. Math. 4, 550 (2013).
8. Y. Shen, L. Tian, and H. Zou, “Practical quantum random-number generator based on measuring the shot noise of vacuum states,” Phys. Rev. A 81, 063814 (2010).
9. C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711 (2010).