ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 537.572, 537.565

The mechanism of laser-stimulated desorption/ionization of nitroaromatic compounds from a nanoporous silicon surface at atmospheric pressure

For Russian citation (Opticheskii Zhurnal):

Довженко Д.С., Кузищин Ю.А., Мартынов И.Л., Еремин И.С., Котковский Г.Е., Чистяков А.А., Красовский В.И., Сипайло И.П. Механизм лазерно-стимулированной десорбции/ионизации нитроароматических соединений с поверхности нанопористого кремния в условиях атмосферного давления // Оптический журнал. 2014. Т. 81. № 8. С. 19–24.

 

Dovzhenko D.S., Kuzishchin Yu.A., Martynov I.L., Eremin I.S., Kotkovskiy G.E., Chistyakov A.A., Krasovskiy V.I., Sipaylo I.P. The mechanism of laser-stimulated desorption/ionization of nitroaromatic compounds from a nanoporous silicon surface at atmospheric pressure [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 8. P. 19–24.

For citation (Journal of Optical Technology):

D. S. Dovzhenko, Yu. A. Kuzishchin, I. L. Martynov, I. S. Eremin, G. E. Kotkovskiĭ, A. A. Chistyakov, V. I. Krasovskiĭ, and I. P. Sipaĭlo, "The mechanism of laser-stimulated desorption/ionization of nitroaromatic compounds from a nanoporous silicon surface at atmospheric pressure," Journal of Optical Technology. 81(8), 435-438 (2014). https://doi.org/10.1364/JOT.81.000435

Abstract:

The question of how to develop methods and devices for the detection of low concentrations of various organic compounds—in particular, explosive substances—is currently attracting much attention. In this connection, there is great interest in laser ionization methods, especially the method of surface laser desorption/ionization from nanostructured surfaces, including porous silicon. In this case, a separate problem is to establish a mechanism for forming ions of the molecules of interest. This paper uses the example of trinitrotoluene to investigate the process of desorption and formation of negative ions of nitroaromatic compounds when a laser acts on porous silicon at atmospheric pressure. The dependence of the ion yield on the intensity of the exciting radiation has been measured. It is established that negative ions of trinitrotoluene form directly on the surface of nanoporous silicon.

Keywords:

ion-mobility spectrometry, porous silicon, laser-stimulated desorption/ionization, trinitrotoluene

OCIS codes: 260.5210; 300.6350

References:

1. G. E. Kotkovskiı˘, A. V. Sychev, A. V. Tugaenko, and A. A. Chistyakov, “Laser spectrometer of the increment of ionic mobility,” Prib. Tekh. Eksp. No. 2, 119 (2011).
2. C. Oberhüttinger, A. Langmeier, H. Oberpriller, M. Kessler, J. Goebel, and G. Müller, “Hydrocarbon detection using laser ion-mobility spectrometry,” Int. J. Ion Mobil. Spectrom. 12, No. 1, 23 (2009).
3. G. A. Eiceman, V. J. Vandiver, C. S. Leasure, G. K. Anderson, J. J. Tiee, and W. C. Danen, “Effects of laser beam parameters in laser ion-mobility spectrometry,” Anal. Chem. 58, 1690 (1986).
4. C. Illenseer, H.-G. Löhmannsröben, and R. H. Schultze, “Application of laser-based ion-mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monit. 5, 780 (2003).
5. G. E. Kotkovskiy, Y. A. Kuzishchin, I. L. Martynov, A. A. Chistyakov, and I. R. Nabiev, “The photophysics of porous silicon: technological and biomedical implications,” Phys. Chem. Chem. Phys. 14, 13890 (2012).
6. P. K. Kashkarov, “Unusual properties of porous silicon,” Soros. Obrazovat. Zh., No. 7 (2005).
7. J. Wei, J. M. Buriak, and G. Siuzdak, “Desorption–ionization mass spectrometry on porous silicon,” Nature 399, No. 5, 243 (1999).
8. I. L. Martynov, V. A. Karavanskiı˘, G. E. Kotkovskiı˘, Yu. A. Kuzishchin, A. S. Tsybin, and A. A. Chistyakov, “Ion mobility spectrometer with ion source based on laser-irradiated porous silicon,” Pis’ma Zh. Tekh. Fiz. 37, No. 1, 56 (2011) [Tech. Phys. Lett. 37, 15 (2011)].
9. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1126 (2000).
10. N. Ott, M. Nerding, G. Müller, R. Brendel, and H. P. Strunk, “Structural changes in porous silicon during annealing,” Phys. Status Solidi A 197, 93 (2003).
11. S. Green and P. Kathirgamanathan, “The quenching of porous silicon photoluminescence by gaseous oxygen,” Thin Solid Films 374, 98 (2000).
12. R. Cisneros, H. Pfeiffer, and C. Wang, “Oxygen absorption in free-standing porous silicon: a structural, optical and kinetic analysis,” Nano. Res. Lett. 5, 686 (2010).
13. T. R. Northen, H.-K. Woo, M. T. Northen, A. Nordström, W. Uritboonthail, K. L. Turner, and G. Siuzdak, “High surface area of porous silicon drives desorption of intact molecules,” J. Soc. Am. Mass Spectrom. 18, 1945 (2007).
14. M. B. Kuznetsov, Photoprocesses on the Surface of Nanosize Silicon (MIFI, Moscow, 2001).
15. A. A. Veber, G. E. Kotkovskiı˘, I. L. Martynov, and A. A. Chistyakov, “Formation of negative ions of nitroaromatic compounds in gases under laser UV irradiation,” Khim. Fiz. 29, No. 8, 20 (2010).