ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 539.24, 539.216.1, 53.086

A porous matrix for studying the optical properties of systems of close-packed quantum dots

For Russian citation (Opticheskii Zhurnal):

Парфенов П.С., Литвин А.П., Ушакова Е.В., Вениаминов А.В., Федоров А.В., Баранов А.В. Пористая матрица для исследования оптических свойств систем плотноупакованных квантовых точек // Оптический журнал. 2014. Т. 81. № 8. С. 38–43.

 

Parfenov P.S., Litvin A.P., Ushakova E.V., Veniaminov A.V., Fedorov A.V., Baranov A.V. A porous matrix for studying the optical properties of systems of close-packed quantum dots [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 8. P. 38–43.

For citation (Journal of Optical Technology):

P. S. Parfenov, A. P. Litvin, E. V. Ushakova, A. V. Veniaminov, A. V. Fedorov, and A. V. Baranov, "A porous matrix for studying the optical properties of systems of close-packed quantum dots," Journal of Optical Technology. 81(8), 449-453 (2014). https://doi.org/10.1364/JOT.81.000449

Abstract:

The structure of filter paper used as a porous matrix for incorporating quantum dots (QDs) has been investigated by means of a confocal microscope and an atomic-force microscope. The morphology of the QDs incorporated into its structure has been investigated, using PbS QDs 6.9 nm in diameter as examples. It is shown that the QDs are deposited onto the surfaces of the fibers, forming small clusters, and are distributed over virtually the entire surface of the fibers, accumulating predominantly in the grooves. A model is proposed for the distribution of QDs inside the volume of the porous matrix, which acts as a complex curved surface of a definite area, determined by the geometry of the fibers of the paper and their roughness. These calculations confirm the proposed model and make it possible to refine the mechanisms of self-organization of close-packed structures composed of QDs and the energy transfer between them.

Keywords:

quantum dots, PbS, porous matrix, atomic-force microscopy, confocal microscopy

Acknowledgements:

The authors thank the Government of the Russian Federation (Grant 074-U01) and the Ministry of Education and Science of the Russian Federation (Project 14.B25.31.0002) for partial financial support of this work.

OCIS codes: 350.4238, 180.1790, 180.5810

References:

1. J. M. Auxier, A. Schulzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, and N. Peyghambarian, “Quantum dots for fiber laser sources,” Proc. SPIE 5709, 249 (2005).
2. I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3, 3023 (2009).
3. A. V. Baranov and E. V. Ushakova, “Photoexcitation energy transfer in systems of quantum dots,” Nauch. Tekhnich. Vest. SPb ITMO 51, No. 6, 294 (2008).
4. P. S. Parfenov, A. P. Litvin, A. V. Baranov, E. V. Ushakova, A. V. Fedorov, M. V. Artem’ev, and A. V. Prudnikov, “Measurement of the luminescence decay times of PbS quantum dots in the near-IR spectral range,” Opt. Spektrosk. 112, 939 (2012) [Opt. Spectrosc. 112, 868 (2012)].
5. A. Litvin, P. Parfenov, E. Ushakova, A. Fedorov, M. Artemyev, A. Prudnikau, V. Golubkov, and A. Baranov, “PbS quantum dots in a porous matrix: optical characterization,” J. Phys. Chem. C 117, 12318 (2013).
6. A. S. Litvin, P. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, and I. D. Rukhlenko, “Optical properties and aging of PbS quantum dots embedded in a porous matrix,” Proc. SPIE 8807, 88070T (2013).
7. E. Ushakova, A. Litvin, P. Parfenov, A. Fedorov, S. Cherevkov, and A. Baranov, “Nonradiative resonant energy transfer between PbS QDs in porous matrix,” Proc. SPIE 8807, 88070W (2013).
8. A. P. Litvin, P. S. Parfenov, E. V. Ushakova, and A. V. Baranov, “Study of the luminescence kinetics of lead sulfide quantum dots,” Nauch. Tekhnich. Vest. Informats. Tekhnolog. Mekh. Optiki 81, No. 5, 32 (2012).
9. E. Ushakova, A. Litvin, P. Parfenov, A. Fedorov, M. Artemyev, A. Prudnikau, I. Rukhlenko, and A. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913 (2012).
10. M. Corricelli, F. Enrichi, D. Altamura, L. De Caro, C. Giannini, A. Falqui, A. Agostiano, M. L. Curri, and M. Striccoli, “Near infrared emission from monomodal and bimodal PbS nanocrystal superlattices,” J. Phys. Chem. C 116, 6143 (2012).
11. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30, 545 (2000).
12. A. Litvin, E. Ushakova, P. Parfenov, A. Fedorov, and A. Baranov, “FRET between close-packed quasi-monodispersed PbS QDs in a porous matrix,” J. Phys. Chem. C 118, 6531 (2014).
13. P. Yang, Y. Wang, and L. Zhang, “Luminescent SiO2 particles: porous structure of matrix and stability of quantum dots,” J. Nanosci. Nanotechnol. 13, 3011 (2013).
14. A. Orlova, Y. Gromova, A. Savelyeva, V. Maslov, M. Artemyev, A. Prudnikau, A. Fedorov, and A. Baranov, “Track membranes with embedded semiconductor nanocrystals: structural and optical examinations,” Nanotechnology 22, 455201 (2011).
15. L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128, 10337 (2006).

16. E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515 (2005).
17. B. Mandelbrot, “How long is the coast of Britain? Statistical self-similarity and fractional dimension,” Science 156, No. 3775, 636 (1967).
18. N. J. A. Sloane, “The packing of spheres,” Sci. Am. 250, 116 (1984) [V Mire Nauki 3, 72 (1984)].
19. E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, and A. V. Baranov, “Self-organization of various sizes of lead sulfide quantum dots,” Nauch. Tekhnich. Vest. Informats. Tekhnolog. Mekh. Opt. 88, No. 6, 127 (2013).
20. A. A. Eliseev and A. V. Lukashin, Functional Nanomaterials, Yu. D. Tret’yakova, ed. (Fizmatlit, Moscow, 2010).