ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.2

Evolution of the width of a one-and-a-half-cycle optical pulse in a nonlinear dielectric medium

For Russian citation (Opticheskii Zhurnal):

Капойко Ю.А., Шполянский Ю.А., Козлов С.А. Эволюция длительности полуторапериодного оптического импульса в нелинейной диэлектрической среде // Оптический журнал. 2014. Т. 81. № 8. С. 52–57.

 

Kapoyko Yu.A., Shpolyanskiy Yu.A., Kozlov S.A. Evolution of the width of a one-and-a-half-cycle optical pulse in a nonlinear dielectric medium [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 8. P. 52–57.

For citation (Journal of Optical Technology):

Yu. A. Kapoĭko, Yu. A. Shpolyanskiĭ, and S. A. Kozlov, "Evolution of the width of a one-and-a-half-cycle optical pulse in a nonlinear dielectric medium," Journal of Optical Technology. 81(8), 460-463 (2014). https://doi.org/10.1364/JOT.81.000460

Abstract:

Simple mathematical expressions are derived to show how the velocity of the center of gravity and the rms width of initially one-and-a-half-cycle pulses depend on the original central frequency and field amplitude, as well as on the properties of nonlinear media with dispersion. It is shown that self-compression of the pulse or its solitonlike (with no change of width) propagation in a medium with positive nonlinearity is not observed even when the central frequency of the pulse lies in the region of anomalous group dispersion of the medium. The central frequency of the pulse, at which its rate of dispersion blurring in the medium is minimal, is computed.

Keywords:

pulses consisting of small number of oscillations, dispersion, nonlinear light propagation

OCIS codes: 190.5530

References:

1. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33 (2010).
2. J. A. Fulop, L. Palfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37, 557 (2012).
3. T. Fuji, Y. Nomura, and H. Shirai, “Real-time observation of single-cycle pulse waveforms by using FROG capable of CEP determination with pulse-front tilt,” in Research in Optical Sciences, OSA Technical Digest (online) (Optical Society of America, 2014), paper HW1C.1.
4. Y. Shen, T. Watanabe, D. A. Arena, C.-C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
5. J. Hebling, M. C. Hoffmann, K. L. Yeh, G. Toth, and K. A. Nelson, “Nonlinear lattice response observed through terahertz SPM,” in Ultrafast Phenomena XVI, P. Corkum, S. de Silvestri, K. A. Nelson, E. Riedle, and R. W. Schoenlein, eds. (Springer-Verlag, 2009), pp. 651–653.
6. D. Turchinovich, J. M. Hvam, and M. C. Hoffmann, “Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor,” Phys. Rev. B 85, 201304 (2012).
7. A. A. Drozdov, S. A. Kozlov, A. A. Sukhorukov, and Yu. S. Kivshar, “Self-phase modulation and frequency generation with few-cycle optical pulses in nonlinear dispersive media,” Phys. Rev. A 86, 053822 (2012).
8. A. A. Drozdov, A. A. Sukhorukov, and S. A. Kozlov, “Spatio-temporal dynamics of single-cycle optical pulses and nonlinear frequency conversion,” Int. J. Mod. Phys. B 28, 1442007 (2014).
9. A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov, and Yu. S. Kivshar, “Spectral approach in the analysis of pulsed terahertz radiation,” J. Infrared Millim. Terahz. Waves 33, 926 (2012).
10. A. A. Drozdov and S. A. Kozlov, “Collimation and focusing of a paraxial wave packet, obtained with diffraction in the far field of an initially single-period wave,” Nauch. Tekhnich. Vest. Informats. Tekhnolog. Mekh. Optiki 3, No. 85, 46 (2013).
11. D. L. Belov, S. A. Kozlov, and Yu. A. Shpolyanskiı˘, “Dynamics of femtosecond pulses with a continuous spectrum in nonlinear waveguides,” Opt. Zh. 69, No. 7, 46 (2002) [J. Opt. Technol. 69, 483 (2002)].
12. Yu. A. Shpolyanskiı˘, “Dynamics of the spectral width of intense laser pulses consisting of several field oscillations in optical waveguides,” Zh. Eksp. Teor. Fiz. 131, 603 (2007) [J. Exp. Theor. Phys. 104, 535 (2007)].
13. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988).
14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 2007; Mir, Moscow, 1996).
15. V. G. Bespalov, S. A. Kozlov, and Yu. A. Shpolyanskiı˘, “Method for analyzing the propagation dynamics of femtosecond pulses with a continuum spectrum in transparent optical media,” Opt. Zh. 67, No. 4, 5 (2000) [J. Opt. Technol. 67, 303 (2000)].
16. S. A. Kozlov and V. V. Samartsev, Fundamentals of Femtosecond Optics (Fizmatlit, Moscow, 2009).
17. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1973).
18. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Mir, Moscow, 1968).