УДК: 681.785
Measurement complex based on the LabVIEW system for a fluorescence study of quantum dots
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Златов А.С., Полищук В.А., Брюховецкий А.П., Григорьев Д.Е., Гурьянов А.Ю. Измерительный комплекс на базе системы LabVIEW для исследования флуоресценции квантовых точек // Оптический журнал. 2014. Т. 81. № 8. С. 80–84.
Zlatov A.S., Polishchuk V.A., Bryukhovetskiy A.P., Grigoriev D.E., Guriyanov A.Yu. Measurement complex based on the LabVIEW system for a fluorescence study of quantum dots [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 8. P. 80–84.
A. S. Zlatov, V. A. Polishchuk, A. P. Bryukhovetskiĭ, D. E. Grigor’ev, and A. Yu. Gur’yanov, "Measurement complex based on the LabVIEW system for a fluorescence study of quantum dots," Journal of Optical Technology. 81(8), 481-484 (2014). https://doi.org/10.1364/JOT.81.000481
A multifunctional measurement complex has been created on the basis of the National Instruments PXIe 1065 platform for automating measurements of the optical characteristics of the secondary luminescence of quantum dots in the visible region. The complex makes it possible to simultaneously record the fluorescence spectra and Raman spectra and to determine the degree of polarization of the radiation and the fluorescence-quenching time. Because of the high computational power of the platform, it is possible to efficiently discriminate low-energy signals and to carry out high-speed processing of experimental data in real time.
luminescence, quantum dots, luminescent labels
OCIS codes: 300.2530
References:1. S. V. Gaponenko, N. N. Rozanov, E. L. Ivchenko, A. V. Fedorov, A. V. Baranov, A. M. Bonch-Bruevich, T. A. Vartanyan, and S. G. Przhibel’skiı˘, The Optics of Nanostructures, A. V. Fedorov, ed. (Nedra, St. Petersburg, 2005).
2. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, and E. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314 (2000).
3. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Matuosi, “Quantum dot bioconjugates for imaging, labeling and sensing,” Nat. Mater. 4, 435 (2005).
4. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University, Cambridge, 1998).
5. A. S. Zlatov, V. A. Polishchuk, A. V. Baranov, and A. V. Fedorov, “Prospects of using luminescent labels based on nanosize structures for a protective labelling system,” in Collection of Articles of the Thirteenth International Conference on Fundamental and Applied Research, Development, and Application of High-Tech in Industry and Economy, A. P. Kudinov, ed. (Izd. Politekhnicheskogo Univ., St. Petersburg, 2012), pp. 68–72.
6. N. M. Lawandy, “Quantum dots, semiconductor nanocrystals and semiconductor particles used as fluorescent coding elements,” U.S. Patent No. 6,633,370 (2003).
7. S. Chang, M. Zhou, and C. P. Grover, “Spectral coding by fluorescent semiconductor nanocrystals for document identification and security applications,” U.S. Patent No. 7,077,329 (2004).
8. P. A. Blum, The LabVIEW Style Book (Prentice-Hall, Englewood Cliffs, New Jersey, 2007; DMK Press, Moscow, 2008).
9. M. S. Frolov and A. P. Bryukhovetskiı˘, “Device for cross-synchronization of television detection systems,” in Abstracts of the Eighteenth International Conference of Undergraduate and Graduate Students on Electronics, Electrical Engineering, and Energetics, Moscow, 2012, vol. 1, p. 124.
10. A. P. Bryukhovetskiı˘, D. E. Grigor’ev, and A. Yu. Gur’yanov, “Hardware–software complex for the collection and processing of information in the laser diagnostics of objects of organic origin,” in Collection of Papers of the Fifteenth International Conference DSPA-2013: Digital Signal Processing and Its Application, Moscow, 2013, pp. 348–351.
11. A. P. Bryukhovetskiı˘ and A. V. Suetenko, Russian Patent No. 100269/2010129924 (2010).