УДК: 535.343, 551.552.3
Absorption and emission of IR radiation by the atmosphere on extended oblique tracks
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Осипов В.М., Борисова Н.Ф. Поглощение и излучение инфракрасной радиации атмосферой на протяженных наклонных трассах // Оптический журнал. 2014. Т. 81. № 9. С. 35–45.
Osipov V.M., Borisova N.F. Absorption and emission of IR radiation by the atmosphere on extended oblique tracks [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 9. P. 35–45.
V. M. Osipov and N. F. Borisova, "Absorption and emission of IR radiation by the atmosphere on extended oblique tracks," Journal of Optical Technology. 81(9), 510-517 (2014). https://doi.org/10.1364/JOT.81.000510
This paper presents an analysis of the contribution of various IR-attenuation mechanisms when the transmittance of oblique atmospheric tracks is being determined. It is shown that, under the conditions of an arid zone, the existing models of aerosol attenuation substantially underestimate its value in the long-wavelength section. Algorithms are developed for rapidly computing the transmittance and the intrinsic thermal radiation of the atmosphere on an oblique track, taking into account the specific meteorological conditions. Agreement with the experimental data is achieved when multimode models of the aerosol distribution in the near-earth layer are used. The transmission-calculation error has been estimated. A comparison of the calculated transmission and emission with the results obtained by means of known calculational methods is presented. A developed software complex is used in creating apparatus for monitoring the optical characteristics of oblique tracks.
atmospheric transmission, thermal radiation, oblique track, computer engineering
OCIS codes: 010.1300, 010.5620, 010.1110, 300.6340
References:1. Yu. A. Pkhalagov, V. N. Uzhegov, and N. N. Shchelkanov, “Aerosol attenuation of optical radiation in the atmosphere of an arid zone,” Optika Atm. Okeana 7, 1318 (1994).
2. V. M. Osipov, “Fast method of calculating the spectral transmission functions for inhomogeneous atmospheric tracks,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 23, No. 2, 140 (1987).
3. V. M. Osipov and N. F. Borisova, “Adaptive model of a band absorption—application for calculation of radiative transfer of high-temperature sources,” Abstracts of the International Radiation Symposium St. Petersburg State University, Vol. 29 (2000), p. 139.
4. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 Model,” 1996, p. 260.
5. L. S. Rothman, I. E. Gordon, and A. Barbe, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533 (2009).
6. R. A. McClatchey, R. W. Fenn, and I. E. A. Selby, “Optical properties of the atmosphere,” AFGL700527, No. 331. G. P. Anderson, S. A. Clough, and F. X. Kneizys, “AFGL atmospheric constituent profiles (0–120 km),” Environ. Res. Pap. No. 954, AFGLTR860110, AD A175173, 1986, p. 44.
7. S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229 (1989), http:/rtweb.aer.com/continuumcode.
8. K. M. Firsov, T. Yu. Chesnokova, and E. V. Bobrov, “Comparison of models of the continuum used for calculating radiation in the window of transparency of the earth’s atmosphere at 8–12 μm,” in Collection of the Abstracts of the International Symposium on Atmospheric Radiation and Dynamics (SpbGU, St. Petersburg, 2011), p. 94.
9. http://rtweb.aer.com/continuumcode.
10. V. E. Zuev, Yu. S. Makushkin, and Yu. N. Ponomarev, Modern Problems of Atmospheric Optics. The Spectroscopy of the Atmosphere (Gidrometeoizdat, Leningrad, 1987), vol. 3.
11. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, and R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code Lowtran 5,” Environmental Research Papers No. 697, AFCRLRT800067, 1980.
12. http://spectra.iao.ru.
13. V. E. Zuev and V. S. Komarov, Statistical Models of the Temperature and Gaseous Components of the Atmosphere (Gidrometeoizdat, Leningrad, 1996).
14. V. M. Osipov and N. F. Borisova, “Technique for calculating the aerosol attenuation in the atmosphere of an arid zone,” in Collection of Abstracts of the International Symposium on Atmospheric Radiation and Dynamics (SpbGU, St. Petersburg, 2011), pp. 126–127.
15. http://atrad.atmos.iao.ru/modisDB/.
16. V. P. Ivanov, Applied Optics of the Atmosphere in Thermal Vision (Novoe Znanie, Kazan, 2000).
17. S. D. Andreev and L. S. Ivlev, “Modeling the optical characteristics of the near-earth aerosol layer of the atmosphere in the 0.3–15-μm spectral layer. Part III. The results of the modelling,” Optika Atm. Okeana 8, 1236 (1995).
18. Yu. S. Makushkin, A. A. Mitsel’, V. P. Rudenko, and K. M. Firsov, “Constructing a statistical model of the characteristics of molecular absorption,” in Collection of the Optometeorological Studies of the Earth’s Atmosphere (Nauka, Sib. Otd., Novosibirsk: 1987), pp. 63–78.
19. V. M. Osipov and N. F. Borisova, “Statistical characteristics of the absorption of laser radiation by atmospheric gases,” Opt. Zh. 66, No. 11, 65 (1999) [J. Opt. Technol. 66, 979 (1999)].
20. V. M. Osipov, N. F. Borisova, A. R. Valiev, M. Ju. Kovchin, A. M. Malov, and V. S. Sirazetdinov, “Automated system for monitoring of atmospheric path optical parameters,” in International Symposium on Atmospheric Radiation and Dynamics (State University, St. Petersburg, 2013), pp. 119–120.