УДК: 533.9.07
Controlling the radiation characteristics of a magnetically compressed discharge of megawatt electric power
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бедрин А.Г., Громовенко В.М., Миронов И.С. Управление характеристиками излучения магнитоприжатого разряда мегаваттной электрической мощности // Оптический журнал. 2014. Т. 81. № 9. С. 5–9.
Bedrin A.G., Gromovenko V.M., Mironov I.S. Controlling the radiation characteristics of a magnetically compressed discharge of megawatt electric power [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 9. P. 5–9.
A. G. Bedrin, V. M. Gromovenko, and I. S. Mironov, "Controlling the radiation characteristics of a magnetically compressed discharge of megawatt electric power," Journal of Optical Technology. 81(9), 486-489 (2014). https://doi.org/10.1364/JOT.81.000486
For a plasma light source based on a magnetically compressed discharge operating in a regime with a discharge-current pulse width equal to 1 s, induced by an electric power of about 1 MW, the possibilities are investigated of forming the time dependence and energy characteristics of radiation supplied from a network thyristor rectifier with an output voltage of about 500 V and a discharge current of up to 6000 A. It is shown that increasing the fraction of easily ionizable elements (Na, Ca, La) in the composition of the plasma-forming material increases the radiant exitance of the plasma radiator. The optimum induction of the compressing magnetic field is found.
magnetically compressed discharge, plasma radiator, thyristor rectifier, magnetic field, ionization potential
OCIS codes: 230.6080; 350.5400
References:1. L. D. Gorshkova, V. A. Gorshkov, and I. V. Podmoshenskiı˘, “Obtaining plasma in a discharge compressed against a wall by a magnetic field,” Teplofiz. Vys. Temp. 6, 1130 (1968).
2. E. V. Kalachnikov, I. S. Mironov, and P. N. Rogovtsev, “Studying the dynamics of the radiation of a high-power magnetic discharge,” Teplofiz. Vys. Temp. 2, 837 (1986).
3. A. G. Bedrin, S. P. Dashuk, and I. S. Mironov, “Quasi-continuous radiation source based on a magnetically compressed discharge,” Teplofiz. Vys. Temp. 45, 182 (2007).
4. A. G. Bedrin, S. P. Dashuk, and I. S. Mironov, “High-power plasma radiator for pulsed and continuous irradiation,” Opt. Zh. 77, No. 3, 22 (2010) [J. Opt. Technol. 77, 169 (2010)].
5. A. G. Bedrin and I. S. Mironov, “Method of obtaining a plasma emission source and a device for implementing it,” Russian Patent No. 2,370,002 (2009).
6. L. D. Gorshkova, I. S. Mironov, and I. V. Podmoshenskiı˘, “Electromagnetic characteristics and energy balance of an H-compressed discharge,” Teplofiz. Vys. Temp. 16, 1130 (1978).
7. I. S. Mironov and P. N. Rogovtsev, “Semiempirical model of a high-power magnetically compressed plasma,” in Abstracts of Reports of the Fourth Interstate Symposium on Radiation Plasma Dynamics (MGTU, Moscow, 1997), pp. 140–141.
8. A. G. Bedrin and I. S. Mironov, “The effect of the internal magnetic induction on the emission characteristics of a magnetically compressed discharge,” in Collection of the Scientific Works of the Eleventh International Symposium on Radiation Plasma Dynamics (NITs Inzhener, Moscow, 2012), pp. 121–125.