ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.372.8

Modification of a technique for determining the maximum refractive index in a gradient waveguide

For Russian citation (Opticheskii Zhurnal):

Свистунов Д.В. Модификация методики определения максимального показателя преломления в градиентном волноводе // Оптический журнал. 2015. Т. 82. № 1. С. 3–8.

 

Svistunov D.V. Modification of a technique for determining the maximum refractive index in a gradient waveguide [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 1. P. 3–8.

For citation (Journal of Optical Technology):

D. V. Svistunov, "Modification of a technique for determining the maximum refractive index in a gradient waveguide," Journal of Optical Technology. 82(1), 1-5 (2015). https://doi.org/10.1364/JOT.82.000001

Abstract:

This paper presents a technique for calculating the maximum of the transverse refractive-index distribution in an asymmetric planar waveguide from the measured mode spectrum. It is proposed to consider in addition a conventional symmetric waveguide, assuming that the branches of its profile are formed by the desired profile of the waveguide being analyzed and its mirror image relative to the sample surface. According to the properties of planar waveguides, the measured mode spectrum of an asymmetric waveguide in this case corresponds to the spectrum of the odd modes of such a symmetric waveguide. Extrapolating the mode spectra of both waveguides into the region of negative orders and shifting one spectrum along the mode-order axis by 0.25 makes it possible to determine the maximum refractive index in the waveguide at the point where the curves constructed in this way intersect. It is shown that the technique developed here can provide a lower error level than the traditional calculational methods.

Keywords:

planar waveguide, mode spectrum, refractive index profile

OCIS codes: 230.7390, 130.0130, 160.3130, 120.3940

References:

1. J. Linares, X. Prieto, and C. Montero, “A novel refractive-index profile for characterization of nonlinear diffusion processes and planar waveguides in glass,” Opt. Mater. 3, 229 (1994).
2. A. A. Lipovskii, D. V. Svistunov, D. K. Tagantsev, and V. V. Zhurihina, “Diffusion nonlinearity in aluminum–boron silicate glasses for ion-exchanged GRIN structures: a simple technique to evaluate diffusion nonlinearity of glasses,” Opt. Mater. 28, 276 (2006).
3. J. Ctyroky, J. Janta, and J. Schrofel, “Refractive-index profile measurement of highly multimode planar waveguides by guided-beam tracking,” Opt. Lett. 7, 552 (1982).
4. R. Goring and M. Rothhardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, No. 3, 82 (1986).
5. J. Steffen, A. Neyer, E. Voges, and N. Heckling, “Refractive-index profile measurement techniques by reflectivity profiling: vidicon imaging, beam scanning and sample scanning,” Appl. Opt. 29, 4468 (1990).
6. W. A. Ramadan, E. Fazio, and M. Bertolotti, “Measurement of the refractive-index profile of planar waveguides by the use of a double Lloyd’s interferometer,” Appl. Opt. 35, 6173 (1996).
7. N. H. Fontaine and M. Young, “Two-dimensional index profiling of fibers and waveguides,” Appl. Opt. 38, 6836 (1999).
8. A. Jesacher, P. S. Salter, and M. J. Booth, “Refractive-index profiling of direct laser-written waveguides: tomographic phase imaging,” Opt. Mater. Express 3, 1223 (2013).
9. J. M. White and P. F. Heidrich, “Optical-waveguide refractive-index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15, 151 (1976).

10. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3, 385 (1985).
11. F. Gonella, F. Caccavale, and A. Quaranta, “Secondary-ion mass spectrometry applied to the study of ion-exchanged glass waveguides with a few modes,” Int. J. Optoelectron. 9, 359 (1994).
12. P. Hertel and H. P. Menzler, “Improved inverse WKB procedure to reconstruct refractive-index profiles of dielectric planar waveguides,” Appl. Phys. B 44, No. 2, 75 (1987).
13. F. Xiang, K. H. Chen, and G. L. Yip, “The application of an improved WKB method to the characterization of diluted silver ion-exchanged glass waveguides in the near infrared,” Proc. SPIE 1794, 40 (1992).
14. J. Rodriguez, S. Fernandez, S. L. Palacios, R. D. Crespo, J. M. Fernandez, A. Guinea, J. M. Virgos, and J. Olivares, “Equivalent-optical-waveguide model for the analysis of optical waveguides by means of an asymptotic effective-index method,” Appl. Opt. 34, 6172 (1995).
15. P. Mathey and P. Jullien, “Numerical analysis of a WKB inverse method in view of index-profile reconstruction in diffused waveguides,” Opt. Commun. 122, 127 (1996).
16. E. Acosta, L. Gato, M. V. Perez, and C. Gomez-Reino, “Fit method to determine the refractive-index profile of planar surface waveguides,” Pure Appl. Opt. 4, 485 (1995).
17. W. Liao, X. Chen, Y. Chen, and Y. Xia, “Index profiling of anisotropic graded-index planar waveguides from effective indices,” J. Opt. Soc. Am. A 22, 1334 (2005).
18. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981; Mir, Moscow, 1984).
19. G. Kogel’nik, “The theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (Mir, Moscow, 1978; Springer Verlag, New York, 1979), pp. 27–96.
20. D. V. Svistunov, “End-fire mode spectroscopy technique of examination of planar waveguides,” J. Opt. A 10, 085301 (2008).
21. D. V. Svistunov, “Using the difference spectrum of the modes when determining the parameters of planar waveguides,” Opt. Zh. 80, No. 1, 17 (2013) [J. Opt. Technol. 80, 12 (2013)].