ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.012.2

Optical properties of hybrid liquid-crystal cells for various angles of incidence of light

For Russian citation (Opticheskii Zhurnal):

Беляев В.В., Соломатин А.С. Оптические свойства гибридных жидкокристаллических ячеек при различных углах падения света // Оптический журнал. 2015. Т. 82. № 1. С. 47–54.

 

Belyaev V.V., Solomatin A.S. Optical properties of hybrid liquid-crystal cells for various angles of incidence of light [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 1. P. 47–54.

For citation (Journal of Optical Technology):

V. V. Belyaev and A. S. Solomatin, "Optical properties of hybrid liquid-crystal cells for various angles of incidence of light," Journal of Optical Technology. 82(1), 36-42 (2015). https://doi.org/10.1364/JOT.82.000036

Abstract:

A theoretical and computer model has been developed for the dependence of the phase-lag difference on the pretilt angle of the liquid-crystal director in cells with an inhomogeneous distribution of the director over the cell thickness and with different angles on the opposing substrates of the cell. A method is described for calculating how the normalized phase-lag difference depends on the distribution law of the director tilt angle over the thickness of the cell. The method can be used for various types of liquid-crystal cells, with positive or negative dielectric or optical anisotropy. A method is proposed for measuring the tilt angle on one of the substrates of a hybrid cell when the pretilt angle of the liquid crystal on the other substrate is known. The model thus developed can be used in designing optical compensators.

Keywords:

liquid-crystal cell, liquid-crystal director, contact angle, hybrid orientation

Acknowledgements:

This work was carried out with support from grants of the Russian Foundation for Basic Research Nos. 14-07-00574-a and 14-07-90009-Bel_a.

OCIS codes: 260.1440, 130.5440

References:

1. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, and Y. Koike, “A new MVA-LCD by polymer sustained alignment technology,” in SID’04 Digest, 2004, p. 1200.
2. M. A. Gan, Ya. M. Gan, and A. S. Chertkov, “Reconstructing wave-front topography from an interferogram by means of digital holography,” Opt. Zh. 73, No. 7, 55 (2006) [J. Opt. Technol. 73, 471 (2006)].
3. D. K. Yang and S. T. Wu, Fundamentals of Liquid-Crystal Devices (Wiley, New York, 2014).
4. V. V. Belyaev, A. S. Solomatin, and D. N. Chausov, “Phase retardation vs. pretilt angle in liquid-crystal cells with homogeneous and inhomogeneous LC director configuration,” Opt. Express 21, 4244 (2013).
5. V. V. Belyaev, A. S. Solomatin, and D. N. Chausov, “Measurement of the liquid-crystal pretilt angle in cells with homogeneous and inhomogeneous LC director configuration,” Appl. Opt. 52, 3012 (2013).
6. V. V. Belyaev, A. S. Solomatin, D. N. Chausov, and A. A. Gorbunov, “Measurement of the LC pretilt angle and polar anchoring in cells with homogeneous and inhomogeneous LC director configuration and weak anchoring on organosilicon aligning films,” in SID’12 Digest, 2012, p. 1422.
7. G. Zheng and Z. Zhang, “Flexoelectric effect in a HAN-IPS cell,” Mol. Cryst. Liq. Cryst. 528, 103 (2010).
8. J.-I. Baek, K.-H. Kim, J. C. Kim, and T.-H. Yoon, “Viewing-angle control of a hybrid-aligned liquid-crystal display,” Mol. Cryst. Liq. Cryst. 498, 103 (2009).
9. E. Jeong, Y. J. Lim, M. H. Chin, J. H. Kim, S. H. Lee, S. H. Ji, G.-D. Lee, K. H. Park, H. C. Choi, and B. C. Ahn, “Viewing-angle controllable liquid-crystal display using a fringe- and vertical-field driven hybrid aligned nematic liquid crystal,” Appl. Phys. Lett. 92, 261 102 (2008).
10. J. W. Ryu, Y. J. Lim, Y. H. Jeong, K. Kim, G.-D. Lee, and S. H. Lee, “A fringe-field driven hybrid aligned nematic liquid-crystal display for narrow viewing-angle display,” J. Japan. Appl. Phys. 46, 5951 (2007).
11. W. C. Kim, Y. H. Jeong, and S. H. Lee, “Electrooptic characteristics of a fringe-field driven hybrid aligned nematic liquid-crystal cell using a liquid crystal with positive dielectric anisotropy,” J. Japan. Appl. Phys. 43, 637 (2004).
12. S.-Y. Wang, H.-M. Wu, and K.-H. Yang, “Simple and direct measurements of pretilt angles in hybrid-aligned nematic liquid-crystal cells,” Appl. Opt. 52, 5106 (2013).
13. Ch. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic-axis orientation by phase-resolved polarization-sensitive optical coherence tomography,” Opt. Express 9, 780 (2001).
14. V. V. Belyaev, A. S. Solomatin, and D. N. Chausov, “Optical properties of liquid-crystal cells with hybrid orientation and negative birefringence,” in SID’13 Digest, 2013, p. 1328.
15. P. Yeh and C. Gu, Optics of Liquid-Crystal Displays (Wiley, New York, 2010).
16. F. W. Harris, “Optical-compensation films with disk groups for liquid-crystal display,” U.S. Patent No. 8,377,558 (2013).
17. F. Yang, L. Ruan, S. A. Jewell, and J. R. Sambles, “Polarization rotator using a hybrid aligned nematic liquid-crystal cell,” Opt. Express 15, 4192 (2007).
18. S. B. Abbott, K. R. Daly, G. D’Alessandro, M. Kaczmarek, and D. C. Smith, “Photorefractive control of surface plasmon polaritons in a hybrid liquid-crystal cell,” Opt. Lett. 37, 2436 (2012).
19. C. J. Gerritsma and J. H. J. Lorteye, “A hybrid liquid-crystal display with a small number of interconnections,” Proc. IEEE 61, 829 (1973).

20. C. Z. Van Doorn, “Dynamic behavior of twisted nematic liquid-crystal layers in switched fields,” J. Appl. Phys. 46, 3738 (1975).
21. V. V. Belyaev, M. F. Grebenkin, and A. Y. Kalashnikov, “Dynamics of the optoelectronic response in a twist cell with dual-frequency addressing,” in Twelfth International Symposium on Display Technologies, Korolev, 2003, pp. 120–123.
22. M. Herrington, “Electrical and optical effects in hybrid liquid-crystal cells,” Doctoral Thesis, Southampton, University of Southampton, 2011.
23. C. Dascalu, “Asymmetric electrooptic response in a nematic liquid crystal,” Rev. Mex. Fis. 47, 281 (2001).
24. V. V. Belyaev and V. G. Mazaeva, “Green technologies of LC alignment on the base of organosilicon compounds,” in SID’11 Digest, 2011, p. 1412.
25. A. Muravsky, A. Murauski, V. G. Mazaeva, and V. V. Belyaev, “Parameters on the LC alignment of organosilicon compound films,” J. Soc. Inf. Display 13, 349 (2005).