УДК: 528.7:629.78:551.5
Studies of the manifestations of the “solar signal” in climatology and meteorology in the Seventeenth to Twenty-First Centuries
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Авакян С.В. Исследования проявлений "солнечного сигнала" в климатологии и метеорологии в ХVII–XXI веках // Оптический журнал. 2015. Т. 82. № 1. С. 74–81.
Avakyan S.V. Studies of the manifestations of the “solar signal” in climatology and meteorology in the Seventeenth to Twenty-First Centuries [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 1. P. 74–81.
S. V. Avakyan, "Studies of the manifestations of the “solar signal” in climatology and meteorology in the Seventeenth to Twenty-First Centuries," Journal of Optical Technology. 82(1), 58-63 (2015). https://doi.org/10.1364/JOT.82.000058
This paper presents a brief history of the testing of the hypothesis that meteorological and climatic conditions are affected by the 11-yr cycle of solar activity manifested by the periodic variation of the number of sunspots.
solar geomagnetic activity, cloudiness, aerial temperature and precipitation, 2-6-year cycles
OCIS codes: 010.1290, 010.1300, 010.3920
References:1. R. J. Bray and R. E. Loughhead, Sunspots, vol. 7 of The International Astrophysics Series (Chapman & Hall, London, 1964).
2. B. Heeland-Hansen and F. Nansen, “Temperature variations in the North Atlantic Ocean and in the atmosphere. Introductory studies on the cause of climatological variations,” Smithsonian Misc. Collect. 70, No. 4, 1 (1920).
3. C. Scheiner, Rosa Ursina sive Sol (Braccianum, 1626–1630).
4. C. G. Abbot, “Temperature departures for forty-seven inland stations, 1875–1910,” Smithsonian Misc. Collect. 70, No. 4, Appendix 1, 307 (1920).
5. G. A. Nikol’skiı˘, Problems of Atmospheric Physics (Izd. LGU, Leningrad, 1986), No. 18, pp. 167–174.
6. E. A. Makarova, A. V. Kharitonov, and T. V. Kazachevskaya, The Flux of Solar Radiation (Nauka. Fizmatgiz, Moscow, 1981).
7. V. N. Kolesnikova and A. S. Monin, “On the spectra of micrometeorological, synoptic, and climatic fluctuations of meteorological fields,” Meteorolog. Issled. No. 16, 30 (1968).
8. R. E. Benestad, Solar Activity and Earth’s Climate (Springer, London, 2002).
9. M. S. Éı˘genson, The Sun, Weather, and Climate (Gidromet, Leningrad, 1963).
10. G. V. Starkov and V. K. Roldugin, “On the connection of the variations of the transparency of the atmosphere with geomagnetic activity,” Geomagn. Aéron. 34, No. 4, 156 (1994).
11. S. V. Avakyan, A. I. Vdovin, and V. F. Pustarnakov, Ionizing and Penetrating Radiation in Near-Earth Space. A Handbook (Gidrometeoizdat, St. Petersburg, 1994).
12. S. V. Avakyan, “Optics in the global changes of environment,” Arm. J. Phys. 2, No. 1, 15 (2009).
13. S. V. Avakyan and N. A. Voronin, “The role of cosmic and ionospheric disturbances in global climatic changes and pipeline corrosion,” Issled. Zemli Kosmosa No. 3, 14 (2011) [Izv. Atmos. Oceanic Phys. 47, 1143 (2011)].
14. S. V. Avakyan, “The role of solar activity in global warming,” Vestn. Ross. Akad. Nauk 83, No. 5, 41 (2013) [Herald Russ. Acad. Sci. 83, 275 (2013)].
15. S. V. Avakyan, “Problems of climate as a problem of optics,” Opt. Zh. 80, No. 11, 101 (2013) [J. Opt. Technol. 80, 717 (2013)].
16. M. I. Pudovkin, “The effect of solar activity on the state of the lower atmosphere and the weather,” Soros. Obrazov. Zh. No. 10, 106 (1996).
17. D. Hauglustaine and J.-C. Gerard, “Possible composition and climate changes due to past intense energetic particle precipitation,” Ann. Geophys. 8, No. 2, 87 (1990).
18. S. I. Avdyushin and A. D. Danilov, “Sun, weather, and climate: Today’s view on the problem (Review),” Geomagn. Aéron. 40, No. 5, 3 (2000).
19. S. V. Avakyan, “Physics of sun–earth couplings: results, problems, and new approaches,” Geomagn. Aéron. 48, No. 4, 3 (2008).
20. V. S. Troitskiı˘, A. M. Starodubtsev, M. R. Zelinskaya, K. M. Strezhneva, M. S. Kitai, and A. I. Sergeeva, “Search for sporadic radio-emission from cosmic space on centimeter and decimeter wavelengths,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 323 (1973).
21. D. R. Bates, “Electron-ion recombination in an ambient molecular gas,” J. Phys. B 14, 3525 (1981).
22. J. B. A. Mitchell, “The dissociative recombination of molecular ions,” Phys. Rep. 186, No. 5, 215 (1990).
23. W. L. Morgan, “Computer experiments on electron-ion recombination in an ambient medium: gases, plasmas and liquids,” in Recent Studies in Atomic and Molecular Processes, A. E. Kingston, ed. (Plenum Press, New York, 1987), pp. 149–166.
24. J. M. Warman, E. S. Sennhauser, and D. A. Armstrong, “Three-body electron-ion recombination in molecular gases,” J. Chem. Phys. 70, 995 (1979).
25. J. A. C. Gallas, G. Leuch, H. Wallher, and H. Figger, “Rydberg atom: high-resolution spectroscopy and radiation interaction—Rydberg molecules,” Adv. At. Mol. Phys. 20, 413 (1985).
26. S. M. Tarr, J. A. Schiavone, and R. S. Freund, “Long-lived high-Rydberg molecules formed by electron impact: H2 , D2 , N2 and CO,” J. Chem. Phys. 75, 2869 (1978).
27. J.-M. Lehn, Supramolecular Chemistry. Concepts and Prospects (Wiley-VCH, Weinheim, 1995; Nauka, Novosibirsk, 1988).
28. S. V. Avakyan, N. A. Voronin, A. V. Troitskiı˘, and S. A. Chernous, “Ways to control weather—climatic characteristics,” in Transactions of the All-Russia Scientific Conference on Problems of Military Applied Geophysics and Monitoring the Status of the Natural Medium, St. Petersburg, 16–17 April 2014, vol. 1, pp. 15–21.