ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.417, 681.787

An unequal-arm Mach–Zehnder interferometer for studying the structure of phase objects

For Russian citation (Opticheskii Zhurnal):

Агашков А.В. Неравноплечий интерферометр Маха-Цендера для исследования структуры фазовых объектов // Оптический журнал. 2015. Т. 82. № 1. С. 9–15.

 

Agashkov A.V. An unequal-arm Mach–Zehnder interferometer for studying the structure of phase objects [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 1. P. 9–15.

For citation (Journal of Optical Technology):

A. V. Agashkov, "An unequal-arm Mach–Zehnder interferometer for studying the structure of phase objects," Journal of Optical Technology. 82(1), 6-11 (2015). https://doi.org/10.1364/JOT.82.000006

Abstract:

An unequal-arm Mach–Zehnder interferometer has been developed in which interference fringes are formed as a result of the passage of a nonparallel homocentric pencil of rays through the interferometer. The scale of the interference fringes relative to the test object or the optical inhomogeneities is controlled by simply replacing the lens of the coherent illuminating system or by displacing the object in the arm of the interferometer. This allows the interferometer to be made in the form of a monolithic structure. A technique is proposed for using the interferometer to determine the change of the optical thickness of dichroic liquid-crystal transparencies when they are switched by an external electric field.

Keywords:

unequal-arm Mach–Zehnder interferometer, dichroic liquid-crystal transparency, optical signal processing

OCIS codes: 120.3180, 230.0230, 070.6020

References:

1. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, New York, 1993).
2. D. De Feo, S. De Nicola, P. Ferraro, P. Maddalena, and G. Pierattini, “A Fourier-transform-based interferometric technique for measuring the elastic anisotropy of a nematic liquid crystal,” Pure Appl. Phys. 7, 1301 (1998).
3. I. A. Lyavshuk and A. M. Lyalikov, “High-sensitivity holographic interferometry method for studying transparent objects with small transverse size,” Zh. Tekh. Fiz. 78, No. 11, 72 (2008) [Tech. Phys. 53, 1458 (2008)].
4. F. Dell’Anno, S. De Siena, and F. Illuminati, “Multiphoton quantum optics and quantum state engineering,” Phys. Rep. 428, 53 (2006).
5. S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, S. Grilli, and G. Pierattini, “A Mach–Zehnder interferometric system for measuring the refractive indices of uniaxial crystals,” Opt. Commun. 202, 9 (2002).
6. D. Malacara, ed., Optical Shop Testing (Wiley & Sons, New York, 2007).
7. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, New York, 1986).
8. A. V. Agashkov, “Resonant domain photorefractive structure in the liquid crystal—photoconducting orienting layer system,” Zh. Tekh. Fiz. 80, No. 7, 96 (2010) [Tech. Phys. 55, 1009 (2010)].
9. A. V. Agashkov, A. A. Kovalev, and J. Parka, “Effect of space-charge transport on dynamic photorefractivity,” Proc. SPIE 6725, 672511 (2007).