УДК: 535.417, 681.787
An unequal-arm Mach–Zehnder interferometer for studying the structure of phase objects
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Агашков А.В. Неравноплечий интерферометр Маха-Цендера для исследования структуры фазовых объектов // Оптический журнал. 2015. Т. 82. № 1. С. 9–15.
Agashkov A.V. An unequal-arm Mach–Zehnder interferometer for studying the structure of phase objects [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 1. P. 9–15.
A. V. Agashkov, "An unequal-arm Mach–Zehnder interferometer for studying the structure of phase objects," Journal of Optical Technology. 82(1), 6-11 (2015). https://doi.org/10.1364/JOT.82.000006
An unequal-arm Mach–Zehnder interferometer has been developed in which interference fringes are formed as a result of the passage of a nonparallel homocentric pencil of rays through the interferometer. The scale of the interference fringes relative to the test object or the optical inhomogeneities is controlled by simply replacing the lens of the coherent illuminating system or by displacing the object in the arm of the interferometer. This allows the interferometer to be made in the form of a monolithic structure. A technique is proposed for using the interferometer to determine the change of the optical thickness of dichroic liquid-crystal transparencies when they are switched by an external electric field.
unequal-arm Mach–Zehnder interferometer, dichroic liquid-crystal transparency, optical signal processing
OCIS codes: 120.3180, 230.0230, 070.6020
References:1. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Interscience, New York, 1993).
2. D. De Feo, S. De Nicola, P. Ferraro, P. Maddalena, and G. Pierattini, “A Fourier-transform-based interferometric technique for measuring the elastic anisotropy of a nematic liquid crystal,” Pure Appl. Phys. 7, 1301 (1998).
3. I. A. Lyavshuk and A. M. Lyalikov, “High-sensitivity holographic interferometry method for studying transparent objects with small transverse size,” Zh. Tekh. Fiz. 78, No. 11, 72 (2008) [Tech. Phys. 53, 1458 (2008)].
4. F. Dell’Anno, S. De Siena, and F. Illuminati, “Multiphoton quantum optics and quantum state engineering,” Phys. Rep. 428, 53 (2006).
5. S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, S. Grilli, and G. Pierattini, “A Mach–Zehnder interferometric system for measuring the refractive indices of uniaxial crystals,” Opt. Commun. 202, 9 (2002).
6. D. Malacara, ed., Optical Shop Testing (Wiley & Sons, New York, 2007).
7. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, New York, 1986).
8. A. V. Agashkov, “Resonant domain photorefractive structure in the liquid crystal—photoconducting orienting layer system,” Zh. Tekh. Fiz. 80, No. 7, 96 (2010) [Tech. Phys. 55, 1009 (2010)].
9. A. V. Agashkov, A. A. Kovalev, and J. Parka, “Effect of space-charge transport on dynamic photorefractivity,” Proc. SPIE 6725, 672511 (2007).