УДК: 621.397.3
Noise suppression in the task of distinguishing the contours and segmentation of tomographic images
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Марусина М.Я., Волгарева А.П., Сизиков В.С. Подавление шумов в задаче выделения контуров и сегментации томографических изображений // Оптический журнал. 2015. Т. 82. № 10. С. 37–42.
Marusina M.Ya., Volgareva A.P., Sizikov V.S. Noise suppression in the task of distinguishing the contours and segmentation of tomographic images [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 10. P. 37–42.
M. Ya. Marusina, A. P. Volgareva, and V. S. Sizikov, "Noise suppression in the task of distinguishing the contours and segmentation of tomographic images," Journal of Optical Technology. 82(10), 673-677 (2015). https://doi.org/10.1364/JOT.82.000673
This article discusses the question of how noise affects the discrimination of the boundaries (contours) between the regions of a tomographic image and, as a consequence, the segmentation of the image. The discrimination of boundaries is associated with differentiation of the image, while the differentiation of noisy functions is an ill-posed problem (unstable with respect to noise on the image). It is proposed to suppress noise not only by well-known filtering methods but also by means of smoothing (approximating) splines. The numerical examples given here show that the boundaries are discriminated more accurately as a result of using splines.
tomographic images, discrimination of boundaries, numerical differentiation, noise filtering, spline approximation
Acknowledgements:This work was carried out with the support of the Russian Foundation for Basic Research (Grant No. 13-08-00442).
OCIS codes: 100.0100
References:1. V. D’yakonov and I. Abramenkova, MATLAB: Signal and Image Processing (Piter, St. Petersburg, 2002).
2. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, NJ, 2002; Tekhnosfera, Moscow, 2005).
3. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, Upper Saddle River, NJ, 2004; Tekhnosfera, Moscow, 2006).
4. E. P. Magonov and T. N. Trofimova, “Automatic segmentation of MRT images of the brain: methods and software,” IMCh RAN. Lektsii i Obzory. 3, No. 3, 35 (2012).
5. V. A. Ivanov, M. Ya. Marusina, and V. S. Sizikov, “Processing of measurement information under conditions of indeterminacy,” Kontrol’. Diagnost. No. 4, 40 (2001).
6. M. Ya. Marusina, “Optimization of measurement transformations based on group-theoretical analysis,” Izv. Vyssh. Uchebn. Zaved. Prib. 48, No. 3, 27 (2005).
7. M. Ya. Marusina, “Correction of the inhomogeneity of the main magnetic field of an MR tomograph based on permanent magnets,” Dissertation for candidate of technical sciences (ITMO, St. Petersburg, 1993).
8. V. S. Sizikov, Reverse Applied Problems and MatLab (Lan’, St. Petersburg, 2011).
9. V. S. Sizikov and R. A. Ékzemplyarov, “Operating sequence when noise is being filtered on distorted images,” J. Opt. Technol. 80, 28 (2013) [Opt. Zh. 80, No. 1, 39 (2013)].
10. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1986).
11. A. F. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, Programs (Naukov Dumka, Kiev, 1986).
12. V. S. Sizikov, Mathematical Methods of Processing the Results of Measurements (Politekhnika, St. Petersburg, 2001).
13. Yu. P. Petrov and V. S. Sizikov, Well-Posed, Ill-Posed and Intermediate Problems with Applications (VSP, Leiden–Boston, 2005).
14. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, Dordrecht, 1996).
15. J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall PRT, Englewood Cliffs, NJ, 1990).
16. M. Ya. Marusina, Invariant Analysis and Synthesis in Models with Symmetries (SPbGU ITMO, St. Petersburg, 2004).
17. V. A. Ivanov, M. Ya. Marusina, and A. V. Flegontov, “Invariant approximations and their application in MR tomography,” Nauchn. Prib. 13, No. 2, 22 (2003).
18. I. H. Bankman, ed., Handbook of Medical Image Processing and Analysis (Elsevier, Burlington, Mass., 2009).
19. E. M. Anodina-Andrievskaya, S. V. Bozhokin, M. Ya. Marusina, Yu. Z. Polonskiı˘, and N. B. Suvorov, “Promising approaches to the analysis of the information content of physiological signals and medical images of humans accompanying intellectual activity,” Izv. Vyssh. Uchebn. Zaved. Prib. 54, No. 7, 27 (2011).