ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 612.82

Study of the influence of the role of the instruction to the observer in tasks of recognizing emotionally colored patterns

For Russian citation (Opticheskii Zhurnal):

Борачук О.В., Шелепин Ю.Е., Хараузов А.К., Васильев П.П., Фокин В.А., Соколов А.В. Исследование влияния роли инструкции наблюдателю в задачах распознавания эмоционально окрашенных образов // Оптический журнал. 2015. Т. 82. № 10. С. 43–52.

 

Borachuk O.V., Shelepin Yu.E., Kharauzov A.K., Vasiliev P.P., Fokin V.A., Sokolov A.V. Study of the influence of the role of the instruction to the observer in tasks of recognizing emotionally colored patterns [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 10. P. 43–52.

For citation (Journal of Optical Technology):

O. V. Borachuk, Yu. E. Shelepin, A. K. Kharauzov, P. P. Vasil’ev, V. A. Fokin, and A. V. Sokolov, "Study of the influence of the role of the instruction to the observer in tasks of recognizing emotionally colored patterns," Journal of Optical Technology. 82(10), 678-684 (2015). https://doi.org/10.1364/JOT.82.000678

Abstract:

This research is devoted to a study of features of the operation of the neural structures of the human brain responsible for “identification, friend-or-foe” patterns when different instructions are being carried out. Digital-image processing methods are used to synthesize stimuli adequate for the task, consisting of images of optoclones of virtual people. Functional magnetic-resonance tomography (fMRT) is used to investigate the basic patterns of brain activity. The dynamics of blood flow in different phases of stimulation is estimated. The opposition principle of the interaction of the regions of the brain responsible for making decisions is detected. It is shown that, first, there is a complex system that jointly operates the zones of the brain, each of which makes its own specific contribution to the accomplishment of mental processes. Second, each of these zones of the brain can be involved in the implementation of various functions, depending on the instruction and the experimental conditions. Third, various structures of the brain interact on the opposition principle. Changing the instruction substantially affects the distribution over the brain of the BOLD signal, which reflects the functional architecture of a large-scale neural network. These results make a substantial contribution to the development of new algorithms for the operation of neuromorphic recognition systems and their practical application in control systems—for example, in analyzing masked mimetic facial expressions.

Keywords:

neural network, neuromorphic image analysis systems, identification, fMRT, opposition principle

Acknowledgements:

This research was carried out at the expense of a grant of the Russian Scientific Foundation (Project No. 14-15-00918) at the I. P. Pavlov Institute of Physiology.

OCIS codes: 100.4996, 170.6960, 330.5020

References:

1. F. W. Campbell and Yu. E. Shelepin, “Foveolar object discrimination ability,” Sens. Syst. 4, No. 2, 181 (1990).
2. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms (Spartan Books, Washington, DC, 1962).

3. T. Kohonen, “Self-organizing maps: optimization approaches,” in Artificial Neural Networks, T. Kohonen, K. Mäkisara, O. Simula, and J. Kanga, eds. (North-Holland, Amsterdam, 1991), pp. 981–990.
4. T. Kohonen, “Analysis of simple self-organizing process,” Biol. Cybernet. 44, 135 (1982).
5. Yu. E. Shelepin, V. A. Fokin, S. V. Meen’shikova, O. V. Borachuk, S. A. Koskin, V. A. Sokolov, S. V. Pronin, A. K. Kharauzov, P. P. Vasil’ev, and O. A. Vakhrameeva, “Methods of iconics and brain-mapping methods in estimating the functional state of the visual system,” Sens. Sist. No. 2, 61 (2014).
6. V. R. Lutsiv, D. S. Dolinov, A. K. Zherebko, and T. A. Novikova, “Using artificial neural networks in image-processing systems,” J. Opt. Technol. 64, 112 (1997) [Opt. Zh. 64, No. 2, 45 (1997)].
7. V. S. Andreev, A. F. Gubkin, A. S. Il’yashenko, A. B. Kadykov, N. N. Lapina, V. R. Lutsiv, I. A. Malyshev, T. A. Novikova, and A. S. Potapov, “Algorithms for automatically processing and analyzing aerospace pictures,” J. Opt. Technol. 74, 307 (2007) [Opt. Zh. 74, No. 5, 12 (2007)].
8. V. R. Lutsiv and R. O. Malashin, “Object-independent structural image analysis: history and modern approaches,” J. Opt. Technol. 81, 642 (2014) [Opt. Zh. 81, No. 11, 31 (2014)].
9. V. R. Lutsiv, “Automatic estimation for parameters of image projective transforms based on object-invariant cores,” Intell. Syst. Ref. Lib. 73, 137 (2015).
10. V. A. Filippov, “Corticomorphic neural-network architecture based on a model of a neuron with consolidation of a memory trace and synaptic plasticity,” in Neuroinformatics, Part 1, NIYaU MIFI, Moscow, 2010, pp. 43–52.
11. V. A. Filippov and F. V. Laktionov, “Developing a self-training system for supporting decision-making from operative control of mainline transport of gas on the basis of corticomorphic neural networks,” in Neuroinformatics, Part 2, NIYaU MIFI, Moscow, 2012, pp. 51–60.
12. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. Roy. Statist. Soc. Ser. B 57, No. 1, 289 (1995).
13. F. Van Overwalle, “Social cognition and the brain: a meta-analysis,” Hum. Brain Mapp. 30, 829 (2009).
14. D. M. Amodio and C. D. Frith, “Meeting of minds: the medial frontal cortex and social cognition,” Nat. Rev. Neurosci. 7, 268 (2006).
15. M. Brass, R. M. Schmitt, S. Spengler, and G. Gergely, “Investigating action understanding: inferential processes versus action simulation,” Curr. Biol. 17, 2117 (2007).
16. F. P. De Lange, M. Spronk, R. M. Willems, I. Toni, and H. Bekkering, “Complementary systems for understanding action intentions,” Curr. Biol. 18, 454 (2008).
17. D. A. Gusnard and M. E. Raichle, “Searching for a baseline: functional imaging and the resting human brain,” Nat. Rev. Neurosci. 2, 685 (2001).
18. M. E. Raichle, A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. A. Gusnard, and G. L. Shulman, “A default mode of brain function,” Proc. Natl. Acad. Sci. USA 98, 676 (2001).
19. K. A. McKiernan, J. N. Kaufman, J. Kucera-Thompson, and J. R. Binder, “A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging,” J. Cogn. Neurosci. 15, 394 (2003).
20. P. Fransson, “How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations,” Neuropsychologia 44, 2836 (2006).
21. Yu. E. Shelepin, V. A. Fokin, A. K. Kharauzov, N. Foremean, S. V. Pronin, O. A. Vakhrameeva, and V. N. Chikhman, “Localization of opponent decision-making mechanisms in the frontal cortex,” in Abstracts of Reports of the Fifth International Conference on Cognitive Science, Kaliningrad, 18–24 June 2012, vol. 2, pp. 841–842.
22. R. Schubotz and D. Y. Cramon, “Functional organization of the lateral premotor cortex: fMRI reveals different region activated by anticipation of object properties, location and seed,” Cogn. Brain Res. 11, 97 (2001).
23. J. Hyvarinen and Yu. E. Shelepin, “Distribution of visual and somatic functions in the parietal associative area 7 of the monkey,” Brain Res. 169, 561 (1979).
24. S. Zeki and J. P. Romaya, “Neural correlates of hate,” PLoS ONE 3, No. 10, e3556 (2008).
25. V. E. Barabanshchikov and E. G. Khoze, “Perception of induced emotional expressions of a calm face,” in Sixth International Conference on Cognitive Science, Kaliningrad, 2014, pp. 142–143.
26. M. D. Greicius and V. Menon, “Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation,” J. Cogn. Neurosci. 16, 1484 (2004).
27. B. Wicker, P. Ruby, J. P. Royet, and P. Fonlupt, “A relation between rest and the self in the brain?” Brain Res. Rev. 43, 224 (2003).
28. M. Iacoboni, M. D. Lieberman, B. J. Knowlton, I. Molnar-Szakacs, M. Moritz, and C. J. Throop, “Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline,” Neuroimage 21, 1167 (2004).
29. J. R. Andrews-Hanna, “The brain’s default network and its adaptive role in internal mentation,” The Neuroscientist 18, No. 3, 251 (2011).
30. T. V. Chernigovskaya, “Ariadne’s thread and Madeleine’s pastry,” V Mire Nauki 1 (2012).
31. L. Conty, K. N’Diaye, C. Tijus, and N. George, “When eye creates the contact! ERP evidence for early dissociation between direct and averted gaze motion processing,” Neuropsychologia. 45, 3024 (2007).
32. A. Senju and M. H. Johnson, “Eye contact effect: mechanism and development,” Trends Cogn. Sci. 13, No. 3, 127 (2009).
33. L. Van der Meer, S. Costafreda, A. Aleman, and A. S. David, “Self-reflection and the brain: a theoretical review and meta-analysis of neuro-imaging studies with implications for schizophrenia,” Neurosci. Biobehav. Rev. 34, 935 (2010).
34. S. Whitfield-Gabrieli, H. W. Thermenos, S. Milanovic, M. T. Tsuang, S. V. Faraone, R. W. McCarley, M. E. Stenton, A. I. Green, A. Nieto-Castanon, P. Laviolette, J. Wojcik, J. D. Gabrieli, and L. J. Seidman, “Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia,” Proc. Natl. Acad. Sci. USA 106, 1279 (2009).
35. A. Etkin and T. D. Wager, “Brain systems underlying anxiety disorders: a view from neuroimaging,” in Anxiety Disorders: Theory, Research and Clinical Perspectives, H. B. Simpson, F. Schneier, Y. Neria, and R. Lewis-Fernandez, eds. (Cambridge University, Cambridge, 2010), pp. 192–203.
36. J. Savitz and W. C. Drevets, “Bipolar and major depressive disorder: neuro-imaging the developmental-degenerative divide,” Neurosci. Biobehav. Rev. 33, 699 (2009).
37. Yu. E. Shelepin, V. A. Fokin, A. K. Kharauzov, N. Foreman, S. V. Pronin, O. A. Vakhrameeva, and V. N. Chikhman, “Using neuroimaging methods to localize mechanisms for making decisions concerning the ordering of textures,” J. Opt. Technol. 78, 808 (2011) [Opt. Zh. 78, No. 12, 57 (2011)].