ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.21, 681.7.03

Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses

For Russian citation (Opticheskii Zhurnal):

Игнатьев Д.А., Игнатьев А.И., Никоноров Н.В., Silvennoinen М. Взаимодействие фемтосекундного лазерного излучения с наночастицами серебра в фототерморефрактивных стеклах // Оптический журнал. 2015. Т. 82. № 11. С. 24–29.

 

Ignatiev D.A., Ignatiev A.I., Nikonorov N.V., Silvennoinen M. Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 11. P. 24–29.

For citation (Journal of Optical Technology):

D. A. Ignat’ev, A. I. Ignat’ev, N. V. Nikonorov, and M. Silvennoinen, "Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses," Journal of Optical Technology. 82(11), 734-737 (2015). https://doi.org/10.1364/JOT.82.000734

Abstract:

The breakdown processes of silver nanoparticles in the volume of photothermorefractive glasses when they are irradiated with a femtosecond laser (800 nm, 120 fs) is investigated as a function of the dose and energy density of the radiation (0.012–4 J/cm2). It is shown that the amplitude of the plasmon-resonance absorption band of silver nanoparticles decreases as a function of the energy density and irradiation dose until it completely disappears. It is concluded that, under the action of femtosecond pulsed laser radiation, silver nanoparticles undergo photodecomposition as a result of multiphoton interaction, with the formation of finer particles and atoms and their partial photoionization and transition to the ionic state. When irradiation is produced by laser radiation having an energy density greater than 0.5 J/cm2, additional photoinduced absorption arises in the 300–550-nm region, associated with the concentration increase of silver molecular clusters and radiation defects as a result of photoionization of the glass matrix.

Keywords:

interaction of femtosecond radiation with matter, photothermorefractive glass, silver nanoparticle, silver molecular cluster, photodecomposition, photoionization, photofragmentation

Acknowledgements:

This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation involving scientific research as part of a state task in the sphere of scientific activity under Task No. 11.1227.2014/K.

OCIS codes: 350.3450, 170.4090, 160.5320

References:

1. M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16, 237 (2001).
2. A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A: Pure Appl. Opt. 11, 065001 (2009).
3. G. Seifert, A. Podlipensky, J. Lange, H. Hofmeister, and H. Graener, “Ultrafast deformation dynamics of silver nanoparticles in glass induced by femtosecond laser pulses,” Proc. SPIE 6118, 61180R (2006).
4. A. V. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150-fs laser irradiation: a luminescence study,” J. Lumin. 109, 135 (2004).
5. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser-assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. Mater. Sci. Proc. 80, 1647 (2005).
6. D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, “Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in-situ and pump-probe spectroscopy investigations revealing Coulomb explosion,” J. Phys. Chem. C 115, 8503 (2011).
7. A. Plech, V. Kotaidis, M. Lorenc, and J. Bonberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44 (2005).
8. A. Hu, P. Peng, H. Alarifi, X. Y. Zhang, J. Y. Guo, Y. Zhou, and W. W. Duley, “Femtosecond laser-welded nanostructures and plasmonic devices,” J. Laser Appl. 24, 042001 (2012).
9. S. Hashimoto, D. Wernera, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28 (2012).
10. M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D. 16, 237 (2001).
11. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619 (1999).
12. S. A. Kuchinskiı˘, N. V. Nikonorov, E. I. Panysheva, V. V. Savin, and I. V. Tunimanova, “Properties of volume phase holograms on polychromatic glasses,” Opt. Spectrosc. 70, 757 (1991) [Opt. Spektrosk. 70, 1296 (1991)].
13. J. Lumeau, V. Smirnov, and L. Glebov, “Phase-shifted volume Bragg gratings in photothermorefractive glass,” Proc. SPIE 6890, 68900A (2008).
14. S. A. Ivanov, A. E. Angervaks, A. S. Shcheulin, A. I. Ignat’ev, and N. V. Nikonorov, “Recording holographic marks for telescopic systems in photohermorefractive glass,” Opt. Spectrosc. 117, 971 (2014) [Opt. Spektrosk. 117, 999 (2014)].
15. N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Silver nanoparticles in oxide glasses: technologies and properties,” in Silver Nanoparticles, D. P. Perez, ed. (In-Tech, Vukovar, Croatia, 2010), pp. 177–201.
16. A. I. Ignat’ev, D. A. Ignat’ev, and N. V. Nikonorov, “Photodecomposition of silver nanoparticles in photothermorefractive glasses,” Nauch.-Tekhn. Vestn. Informats. Tekh. Mekh. Opt. 85, No. 3, 158 (2013).
17. D. A. Ignat’ev, A. I. Ignat’ev, N. V. Nikonorov, and D. S. Starodubov, “Reversible photodecomposition of silver nanoparticles in photothermorefractive glasses,” Nauch.-Tekhn. Vestn. Informats. Tekh. Mekh. Opt. 89, No. 1, 206 (2014).
18. D. A. Ignatiev, A. I. Sidorov, N. V. Nikonorov, and A. I. Ignatiev, “Photodestruction of silver nanocrystals in photo-termorefractive glasses under pulse laser radiation,” in Proceedings of the Twelfth International Conference on the Structure of Noncrystalline Materials, Riva del Garda, Italy, 2013, p. 228.
19. D. A. Ignatiev, A. I. Ignatiev, A. I. Sidorov, and N. V. Nikonorov, “Effect of pulse laser radiation on silver nanoparticles and molecular cluster in photothermorefractive glass,” in Proceedings of the Sixth Finnish–Russian Photonics and Lasers Symposium (PALS), Kuopio, Finland, 2013, p. 17.
20. A. I. Ignatiev, N. V. Nikonorov, and D. A. Ignatiev, “Photofragmentation and photoionisation of silver nanoparticles in photothermorefractive glass,” in Proceedings of the Third International Conference on Competitive Materials and Technology Processes, Miskolc-Lillafured, Hungary, 2013, p. 104.
21. A. I. Ignatiev, D. A. Ignatiev, and N. V. Nikonorov, “Photodestruction of silver nanoparticles in nanoglass–ceramics,” in Proceedings of the Tenth International Symposium on Crystallization in Glasses and Liquids, Goslar, Germany, 2012, p. 82.
22. A. I. Ignat’ev, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, “Influence of UV irradiation and heat treatment on the luminescence of molecular silver clusters in photothermorefractive glasses,” Opt. Spectrosc. 114, 769 (2013) [Opt. Spektrosk. 114, 838 (2013)].
23. A. I. Sidorov, N. V. Nikonorov, V. A. Tsekhomskiı˘, and K. E. Lazareva, “Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass,” Opt. Spectrosc. 107, 705 (2009) [Opt. Spektrosk. 107, 745 (2009)].