УДК: 548.73 535.015
Investigation of the structural and spectroluminescence properties of ytterbium–erbium oxyfluoride glasses and nanoglass–ceramics
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бибик А.Ю., Асеев В.А., Колобкова Е.В., Никоноров Н.В., Нурыев Р.К. Исследование структурных и спектрально-люминесцентных свойств иттербий-эрбиевых оксифторидных стекол и наностеклокерамик // Оптический журнал. 2015. Т. 82. № 11. С. 71–74.
Bibik A.Yu., Aseev V.A., Kolobkova E.V., Nikonorov N.V., Nuryev R.K. Investigation of the structural and spectroluminescence properties of ytterbium–erbium oxyfluoride glasses and nanoglass–ceramics [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 11. P. 71–74.
A. Yu. Bibik, V. A. Aseev, E. V. Kolobkova, N. V. Nikonorov, and R. K. Nyriev, "Investigation of the structural and spectroluminescence properties of ytterbium–erbium oxyfluoride glasses and nanoglass–ceramics," Journal of Optical Technology. 82(11), 771-773 (2015). https://doi.org/10.1364/JOT.82.000771
Structural and spectroluminescence studies have been carried out on the transparency of ytterbium–erbium oxyfluoride glasses and nanoglass–ceramics based on them. The glass-transition temperatures and the crystallization maximum have been established from the results of differential scanning calorimetry. X-ray phase analysis has been used to determine the composition of the crystalline phase, the size of the crystals, and the unit-cell parameters. The spectroluminescence properties have been studied for various erbium concentrations and heat-treatment regimes.
oxyfluoride glasses, oxyfluoride glass-ceramics, X-ray phase analysis, spectroluminescence properties, ytterbium, erbium, crystalline phase
Acknowledgements:This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation (Identifier PNIÉR:RFMEFI58114X0006).
OCIS codes: 160.2750 300.6560
References:1. P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass-ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78, 6367 (1995).
2. M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass–ceramics,” J. Non-Cryst. Solids 239, 149 (1998).
3. T. Suzuki, S. Masaki, K. Mizuno, and Y. Ohishi, “Synthesis and luminescent properties of transparent oxyfluoride glass-ceramics containing Er3+ :YLiF4 nanocrystals,” Proc. SPIE 7721, 210 (2010).
4. I. Gugov, M. Mueller, and C. Ruessel, “Transparent oxyfluoride glass ceramics co-doped with Er 3+ and Yb 3+—crystallization and upconversion spectroscopy,” J. Solid State Chem. 184, 1001 (2011).
5. A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: single crystals, ceramics, glasses, and glass–ceramics,” J. Fluorine Chem. 132, 1165 (2011).
6. Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” J. Appl. Phys. Lett. 63, 3268 (1993).
7. M. Beggiora, I. M. Reaney, A. B. Seddon, D. Furniss, and S. A. Tikhomirova, “Phase evolution in oxy-fluoride glass ceramics,” J. Non-Cryst. Solids 326–327, 476 (2003).
8. V. A. Aseev, V. V. Golubkov, E. V. Kolobkova, and N. V. Nikonorov, “Lanthanoid oxyfluorides of lead in a glassy matrix,” Fiz. Khim. Stekla 38, 238 (2012).