ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.7.09

Laser apparatus for microstructuring a metal surface, using a fiber laser

For Russian citation (Opticheskii Zhurnal):

Васильев О.С., Вейко В.П., Горный С.Г., Рузанкина Ю.С. Лазерная установка для микроструктурирования поверхности металла с использованием волоконного лазера // Оптический журнал. 2015. Т. 82. № 12. С. 70–77.

 

Vasiliev O.S., Veiko V.P., Gorniy S.G., Ruzankina Yu.S. Laser apparatus for microstructuring a metal surface, using a fiber laser [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 12. P. 70–77.

For citation (Journal of Optical Technology):

O. S. Vasil’ev, V. P. Veĭko, S. G. Gornyĭ, and Yu. S. Ruzankina, "Laser apparatus for microstructuring a metal surface, using a fiber laser," Journal of Optical Technology. 82(12), 831-836 (2015). https://doi.org/10.1364/JOT.82.000831

Abstract:

This paper presents a method for microstructuring a metal surface by the radiation of a pulsed fiber laser with a scanner system for displacing the light beam. Specified topographical relief is modeled in a graphic editor, after which it is fabricated on the experimental material. A parameter matrix is created that makes it possible to determine the optimum operating regimes of the laser apparatus for processing the specific material. Three stages of the microstructuring process are described (profiling, cleaning, and polishing), along with the corresponding geometrical parameters of the fabricated structures. A method of reducing the relief roughness Ra and Rz is developed.

Keywords:

fiber laser, microgeometry, surface characteristics, microstructure

Acknowledgements:

This work was carried out with state financial support of the leading universities of the Russian Federation (RF) (Subsidy 074-U01), grant No. NSh 1364.201 of the President of the RF for state support of the leading scientific schools of the RF, and Grant No. 4-29-07227 of the Russian Foundation for Basic Research.

OCIS codes: 220.4000, 230.4000, 240.0240, 160.0160

References:

1. J. G. Schneider, Performance Properties of Parts with Regular Micro Relief (Mechanical Engineering, Leningrad, Deption, 1982; Mashinostroenie, Leningrad, 1982).
2. V. P. Veiko, “Laser-assisted micro shaping. Laser-assisted Microtechnology (LAM–2000),” Proc. SPIE 4157, 93–103 (2001).
3. V. P. Veiko and S. M. Metev, Laser Assisted Microtechnology (Springer-Verlag, Heidelberg, 1998).
4. P. Heyl, T. Olschewski, and R. W. Wijnaendts, “Manufacturing of 3D structures for micro-tools using laser ablation,” Heidelberg Instrum. Mikrotechnik 57–58, 775–780 (2001).
5. B. S. Medres and M. Bamberger, “Laser texturing of friction surfaces,” Lasers Eng. 18, 137–144 (2008).
6. N. H. Rizvi and T. P. Rumsby, “New developments and applications in the production of 3D micro-structures by laser micro-machining,” Proc. SPIE 3898, 240–249 (1999).

7. V. P. Veı˘ko, A. A. Kishalov, T. Yu. Mutin, and V. N. Smirnov, “Prospects of industrial applications of optical materials,” Nauchno-Tekh. Vest. Informats. Tekhnol. Mekh. Optiki 3(79), 50–54 (2012).
8. J.-z. Lu, C.-j. Yang, L. Zhang, A.-x. Feng, and Y.-f. Jiang, “Mechanical properties and microstructure of bionic non-smooth stainless steel surface by laser multiple processing,” J. Bionic Eng. 6, 180–185 (2009).
9. The SPLM MiniMarker2-M20A4 System Operating Handbook (Lazerny Tsentr, St. Petersburg, 2014).
10. R. Knappe, “Applications of picosecond lasers and pulse-bursts in precision manufacturing,” Proc. SPIE 8243, 82430I (2012).
11. V. P. Veĭko and E. A. Shakhno, Collection of Problems on Laser Technologies (SpbGU ITMO, St. Petersburg, 2007).
12. V. P. Veĭko and E. A. Shakhno, Laser Technologies in Problems and Examples. Textbook for a Course on the Physical Engineering Foundations of Laser Technologies (SpbGU ITMO, St. Petersburg, 2014).
13. S. G. Scholz, C. A. Griffiths, S. S. Dimov, E. B. Brousseau, G. Lalev, and P. Petkov, “Manufacturing routes for replicating micro- and nanosurface structures with bio-mimetic applications,” CIRP J. Manuf. Sci. Technol. 4, 347–356 (2011).
14. M. Pfeiffer, A. Engel, S. Weibmantel, S. Scholze, and G. Reisse, “Microstructuring of steel and hard metal using femtosecond laser pulses,” Phys. Procedia 12, 60–66 (2011).
15. V. Velkova, G. Lalev, H. Hirshy, F. Omar, S. Scholz, E. Minev, and S. Dimov, “Process chain for serial manufacture of 3D micro- and nanoscale structures,” CIRP J. Manuf. Sci. Technol. 4, 340–346 (2011).
16. V. N. Urtsev, S. I. Platov, and V. P. Antsupov, “Method of processing rollers,” Russian Patent 2,224,822 (2004).
17. A. I. Pyzhov, S. A. Shvedov, and P. V. Timchenko, “Stamping device,” Russian Patent 2 308 377 (2005).
18. I. K. Marshakov, “Corrosion stability and the dezincing of brass,” in Surface Physical Chemistry and the Protection of Materials (Nauka, Moscow, 2005), pp. 227–233.
19. W.-S. Kim, I.-H. Yun, J.-J. Lee, and H.-T. Jung, “Evaluation of mechanical interlock effect on adhesion strength of polymer–metal interfaces using micropatterned surface topography,” Int. J. Adhes. Adhes. 30, 408–417 (2010).
20. C. Nies, F. Fug, C. Otto, and W. Possart, “Adhesion of polyurethanes on native metal surfaces—stability and the role of area-like species,” Int. J. Adhes. Adhes. 52, 19–25 (2014).
21. A. Schubert, S. Gross, J. Edelmann, and B. Schulz, “Laser microstructuring of high-stressed embossing dies,” Phys. Procedia 5, 261–268 (2010).
22. K. M. Bae, J. S. Ko, T. W. Lim, D.-Y. Yang, B. S. Shin, H. S. Lee, and S. H. Park, “Direct reproduction of 3D microstructures using a hybrid approach by creation of master-patterns and metallic molds for embossing,” Microelectron. Eng. 88, 3300–3305 (2011).