УДК: 681.787, 681.7.063
Modelling interferometric apparatus for recording variable-period Bragg gratings in an optical fiber
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Васильев В.Н., Вознесенская А.О., Романова Г.Э. Моделирование интерферометрической установки для записи решёток Брэгга с переменным периодом в оптическом волокне // Оптический журнал. 2015. Т. 82. № 2. С. 31–36.
Vasiliev V.N., Voznesenskaya A.O., Romanova G.E. Modelling interferometric apparatus for recording variable-period Bragg gratings in an optical fiber [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 2. P. 31–36.
V. N. Vasil’ev, A. O. Voznesenskaya, and G. É. Romanova, "Modelling interferometric apparatus for recording variable-period Bragg gratings in an optical fiber," Journal of Optical Technology. 82(2), 85-89 (2015). https://doi.org/10.1364/JOT.82.000085
This paper discusses a layout for recording variable-period Bragg gratings in optical fibers, based on the use of a modified Talbot interferometer with cylindrical lenses. An analysis is given of how the parameters of the apparatus, including the cylindrical lenses, affect the characteristics of the gratings.
fiber Bragg gratings, chirping, optical systems design
OCIS codes: 050.1590, 060.3735, 220.4830
References:1. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, CA, 2009).
2. S. A. Vasilev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fiber gratings and their applications,” Quantum Electron. 35, 1085 (2005).
3. S. V. Varzhel’, A. V. Kulikov, I. K. Meshkovskiı˘, and V. E. Strigalev, “Recording Bragg gratings in a birefringent optical fiber with a single 20-ns pulse of an excimer laser,” Opt. Zh. 79, No. 4, 85 (2012) [J. Opt. Technol. 79, 257 (2012)].
4. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035 (1993).
5. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327 (1995).
6. C. Li, Y.-M. Zhang, X.-F. Tian, and B.-H. Xiong, “Study of wedge-adjusted Talbot interferometer for writing fiber gratings with variable inscribed Bragg wavelengths,” Opt. Eng. 42, 3452 (2003).
7. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picoseconds laser pulses and two-beam interferometry,” Opt. Express 16, No. 23, 19169 (2008).
8. Y. Wang, J. Grant, A. Sharma, and G. Myers, “Modified Talbot interferometer for fabrication of fiber-optic grating filter over a wide range of Bragg wavelength and bandwidth using a single phase mask,” J. Lightwave Technol. 19, 1569 (2001).
9. Y. Painchaud, A. Chandonnet, and J. Lauzon, “Chirped fiber gratings produced by tilting the fiber,” Electron. Lett. 31, 171 (1995).
10. M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, “Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow band pass filters produced by the use of an amplitude mask,” Electron. Lett. 30, 891 (1994).
11. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19, 2027 (1994).
12. Q. Zhang, D. A. Brown, L. J. Reinhart, and T. F. Morse, “Linearly and nonlinearly chirped Bragg gratings fabricated on curved fibers,” Opt. Lett. 20, 1122 (1995).
13. Zemax, “Optical design program user’s guide” (18 March, 2014).
14. M. Nicholson, “How to produce photo-realistic output images,” Zemax, 2006, http://www.zemax.com/support/knowledgebase/how‑to‑produce‑photo‑realistic‑output‑images.