ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.42

Sharp focusing of laser beams in anisotropic uniaxial crystals

For Russian citation (Opticheskii Zhurnal):

Хонина С.Н., Зотеева О.В., Харитонов С.И. Острая фокусировка лазерных пучков в анизотропных одноосных кристаллах // Оптический журнал. 2015. Т. 82. № 4. С. 23–31.

 

Khonina S.N., Zoteeva O.V., Kharitonov S.I. Sharp focusing of laser beams in anisotropic uniaxial crystals [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 4. P. 23–31.

For citation (Journal of Optical Technology):

S. N. Khonina, S. I. Kharitonov, and O. V. Zoteeva, "Sharp focusing of laser beams in anisotropic uniaxial crystals," Journal of Optical Technology. 82(4), 212-219 (2015). https://doi.org/10.1364/JOT.82.000212

Abstract:

This paper discusses the sharp focusing of homogeneously polarized laser beams in a uniaxial crystal. It is shown analytically and numerically that, when homogeneously polarized radiation is sharply focused along the axis of a crystal, two foci are formed, corresponding to the ordinary and extraordinary rays. The introduction of a vortex phase into the incident beam results in the formation of zero intensity at the center of the focus of the ordinary rays and a longitudinal electric-field component at the center of the focus of the extraordinary rays. The contribution of the longitudinal component is greater, the sharper the focusing. With circular polarization, larger amplification of the longitudinal component is observed, and its intensity becomes comparable with that of the transverse components. This results in the formation of a focus of the extraordinary rays with a flat vertex.

Keywords:

sharp focusing, uniaxial crystal, vortex laser beam, longitudinal electric-field component

Acknowledgements:

This work was carried out with the financial support of the Russian Foundation for Basic Research (RFFI Grants 13-07-00266, 13-07-9700r_povolzh’e_a, “My first grant,” and 14-01-31401 mol_a) and the Ministry of Education and Science of the Russian Federation.

OCIS codes: 050.1970, 050.4865, 260.1440

References:

1. J. J. Stamnes and D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150, 251 (1998).
2. D. Jiang and J. J. Stamnes, “Numerical and asymptotic results for focusing of two-dimensional waves in uniaxial crystals,” Opt. Commun. 163, 55 (1999).
3. D. Jiang and J. J. Stamnes, “Numerical and experimental results for focusing of two-dimensional electromagnetic waves into uniaxial crystals,” Opt. Commun. 174, 321 (2000).
4. S. Stallinga, “Axial birefringence in high-numerical-aperture optical systems and the light distribution close to focus,” J. Opt. Soc. Am. A 18, 2846 (2001).
5. S. Stallinga, “Light distribution close to focus in biaxially birefringent media,” J. Opt. Soc. Am. A 21, 1785 (2004).
6. J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A 9, 664 (2007).
7. K. Yonezawa, Y. Kozawa, and S. Sato, “Focusing of radially and azimuthally polarized beams through a uniaxial crystal,” J. Opt. Soc. Am. A 25, 469 (2008).
8. Z. Zhang, J. Pu, and X. Wang, “Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal,” Appl. Opt. 47, 1963 (2008).
9. S. N. Khonina and I. Golub, “Optimization of focusing of linearly polarized light,” Opt. Lett. 36, 352 (2011).
10. S. N. Khonina and S. I. Kharitonov, “Analog of the Rayleigh–Sommerfeld integral for an anisotropic and gyrotropic medium,” Komp. Opt. 36, 172 (2012).
11. S. N. Khonina and S. I. Kharitonov, “An analog of the Rayleigh–Sommerfeld integral for anisotropic and gyrotropic media,” J. Mod. Opt. 60, 814 (2013).
12. S. N. Khonina, S. G. Volotovskiı˘, and S. I. Kharitonov, “Periodic intensity variation of modal laser beams with propagation in anisotropic uniaxial crystals,” Izv. Samarsk. Nauch. Tsentra Ross. Akad. Nauk 14, No. 4, 18 (2012).