ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 528.8, 536.33

Technique for recognizing space objects of flat and convex shape from their thermal self-radiation in the earth’s shadow

For Russian citation (Opticheskii Zhurnal):

Дзитоев А.М., Ханков С.И. Методика распознавания космических объектов плоской и выпуклой формы по их собственному тепловому излучению в тени Земли // Оптический журнал. 2015. Т. 82. № 4. С. 32–40.

 

Dzitoev A.M., Khankov S.I. Technique for recognizing space objects of flat and convex shape from their thermal self-radiation in the earth’s shadow [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 4. P. 32–40.

For citation (Journal of Optical Technology):

A. M. Dzitoev and S. I. Khankov, "Technique for recognizing space objects of flat and convex shape from their thermal self-radiation in the earth’s shadow," Journal of Optical Technology. 82(4), 220-226 (2015). https://doi.org/10.1364/JOT.82.000226

Abstract:

A technique has been developed for calculating the intensities of the thermal self-radiation of a space object in the form of a flat face in the viewing direction as a function of its tilt angle to the plane of the local horizon in the earth’s shadow. The main laws governing the formation of the temperatures and radiant intensities of such an object as they depend on the altitude above the earth’s surface are compared with the characteristics inherent in a spherical object. It is shown that a flat object can be remotely distinguished from an object of spherical shape on the basis of the detected regularities. In terms of physically valid limitations, a technique is proposed for remotely determining the characteristic size of a flat face, based on a comparison of the recorded radiation fluxes with the radiation fluxes of a spherical reference object in two spectral ranges and from two observation aspects.

Keywords:

space object, radiant intensities, irradiance coefficient, thermal regime, radiant heat transfer, Earth shine

OCIS codes: 010.5620, 120.4820, 120.6780, 350.6090

References:

1. S. I. Khankov, “Possibilities of using cryogenic optoelectronic systems to detect asteroids,” Vest. Mezhdunar. Akad. Khol. No. 1, 46 (2014).
2. V. P. Berdyshev, E. N. Garin, and A. N. Fomin, Radar Systems: A Textbook (SFU, Krasnoyarsk, 2012).
3. E. V. Lapovok and S. I. Khankov, “Characteristics of the thermal radiation of nonisothermal regions,” Inzh.-Fiz. Zh. 62, 866 (1992).
4. A. M. Dzitoev and S. I. Khankov, “Technique for calculating the irradiance coefficients of a cylindrical space object irradiated by the earth’s illumination,” Nauchn.-Tekhn. Vest. Informats. Tekhnolog. Mekh. Opt. No. 1 (89), 145 (2014).
5. A. M. Dzitoev and S. I. Khankov, “Thermal similarity of space objects of typical configurations,” Nauchn.-Tekhn. Vest. Informats. Tekhnolog. Mekh. Opt. No. 2 (90), 130 (2014).
6. A. A. Kamenev, E. V. Lapovok, and S. I. Khankov, Analytical Methods for Calculating the Thermal Regimes and Characteristics of the Intrinsic Thermal Radiation of Objects in Near-Earth Space (NTTs im. L.T. Tuchkova, St. Petersburg, 2006).
7. M. M. Miroshnikov, Theoretical Principles of Optoelectronic Devices. A College Textbook (Mashinostroenie, Leningrad, 1977).
8. L. Sh. Oleı˘nikov, Cryooptical Systems (IPK KOSTA, St. Petersburg, 2013).
9. K. E. Trenberth, J. T. Fasullo, and J. Keihl, “Earth’s global energy budget,” Bull. Amer. Meteorol. Soc. 90, 311 (2009).
10. G. P. Petrov, Modelling the Thermal Regimes of a Spacecraft and the Medium That Surrounds It (Mashinostroenie, Moscow, 1971).
11. Yu. V. Baeva and S. I. Khankov, “High-altitude dependences of the temperature of the DZZ telescope housing, taking into account the thermal effect of the spacecraft,” Vop. Radioélektron. Ser. Tekhnika Televid. No. 1, 60 (2014).