ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 538.9, 53.098

Orbital and spin moments of one-electron states localized on quantum dots in a magnetic field

For Russian citation (Opticheskii Zhurnal):

Григорьев С.Н., Мандель А.М., Ошурко В.Б., Соломахо Г.И. Орбитальный и спиновый моменты одноэлектронных состояний, локализованных на квантовых точках в магнитном поле // Оптический журнал. 2015. Т. 82. № 5. С. 11–18.

 

Grigoriev S.N., Mandel A.M., Oshurko V.B., Solomakho G.I. Orbital and spin moments of one-electron states localized on quantum dots in a magnetic field [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 5. P. 11–18.

For citation (Journal of Optical Technology):

S. N. Grigor’ev, A. M. Mandel’, V. B. Oshurko, and G. I. Solomakho, "Orbital and spin moments of one-electron states localized on quantum dots in a magnetic field," Journal of Optical Technology. 82(5), 274-279 (2015). https://doi.org/10.1364/JOT.82.000274

Abstract:

This paper discusses the behavior of single-electron states localized on quantum dots in an external magnetic field. Such states have a significant size of the electron cloud and can serve as a basis for implementing qubits with optical computation procedures. The orbital and spin “current” induced by a magnetic field in such states is calculated, along with the magnetic moments of these currents. It is shown that the magnetic susceptibility of the states of interest exceeds by several orders of magnitude the values that are characteristic of atomic physics, while the spin moment is determined only by the magnetic splitting factor of the semiconductor.

Keywords:

orbital and spin magnetic moments, quantum dots, magnetic field

Acknowledgements:

This work was carried out with the support of the Ministry of Education and Science of the Russian Federation as part of State Contract No. 1678 and with the support of the Russian Foundation for Basic Research, Grant No. 14-07-00168.

OCIS codes: 020.2649, 140.5960, 020.7490, 350.3390

References:

1. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45 (2010).
2. O. E. Dial, M. D. Shulman, S. P. Harvey, H. Bluhm, V. Umansky, and A. Yacoby, “Charge noise spectroscopy using coherent exchange oscillations in a singlet–triplet qubit,” Phys. Rev. Lett. 110, 146 804 (2013).
3. D. Bowmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, New York, 2000).
4. R. Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman, W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates,” Phys. Rev. Lett. 94, 196802 (2005).
5. B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, “Spin qubits in graphene quantum dots,” Nat. Phys. 3, 192 (2007).
6. V. M. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Zh. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers (Review),” Fiz. Tekh. Poluprovodn. 32, 385 (1998) [Semiconductors 32, 343 (1998)].
7. G. G. Zegrya, O. V. Konstantinov, and A. V. Matveentsev, “Structure of energy quantum levels in a quantum dot shaped as an oblate body of revolution,” Fiz. Tekh. Poluprovodn. 37, 334 (2003) [Semiconductors 37, 317 (2003)].
8. Yu. N. Demkov and G. N. Drukarev, “A particle with low binding energy in a magnetic field,” Zh. Eksp. Teor. Fiz. 49, 257 (1965) [JETP 22, 182 (1966)].
9. A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions, and Decays in Nonrelativistic Quantum Mechanics (Nauka, Moscow,
1966).
10. Yu. N. Demkov and V. N. Ostrovskiı˘, Method of Zero-Radius Potential in Atomic Physics (Izdatel’stvo LGU, Leningrad, 1975).
11. V. N. Rodionov, G. A. Kravtsova, and A. M. Mandel’, “The lack of the stabilization of quasi-stationary electron states in a strong magnetic field,” Dok. Ross. Akad. Nauk 386, 753 (2002) [Phys.–Dokl. 47, 725 (2002)].
12. V. G. Kadyshevskii, G. A. Kravtsova, A. M. Mandel, and V. N. Rodionov, “Threshold phenomena in intense electromagnetic fields,” Theor. Math. Phys. 134, 198 (2003).
13. V. N. Rodionov, G. A. Kravtsova, and A. M. Mandel’, “On the influence of strong electric and magnetic fields on spatial dispersion and anisotropy of the optical properties of a semiconductor,” Pis’ma Zh. Eksp. Teor. Fiz. 78, 253 (2003) [JETP Lett. 78, 218 (2003)].
14. F. Kh. Chibirova and V. R. Khalilov, “Effect of a crossed uniform electromagnetic field on loosely localized electron states,” Mod. Phys. Lett. 20, 663 (2005).
15. V. N. Rodionov, G. A. Kravtsova, and A. M. Mandel, “Equation for the complex energy of a bound particle in a laser radiation field in the presence of strong constant electromagnetic fields,” Theor. Math. Phys. 145, 1539 (2005).
16. V. N. Rodionov, “Scalar and spinor particles with low binding energy in the strong stationary magnetic field studied by means of two- and three-dimensional models,” Phys. Rev. A 75, 062111 (2007).
17. V. N. Rodionov, G. A. Kravtsova, and A. M. Mandel, “Wave function and the probability current distribution for a bound electron moving in a uniform magnetic field,” Theor. Math. Phys. 164, 960 (2010).
18. S. N. Grigoriev, A. M. Mandel, V. B. Oshurko, and G. I. Solomakho, “Determining the effective fractal dimension of nanodimensional coatings with the aid of magnetic field,” Pis’ma Zh. Tekh. Fiz. 37, No. 24, 74 (2011) [Tech. Phys. Lett. 37, 1176 (2011)].
19. V. N. Rodionov, A. M. Mandel’, and G. A. Kravtsova, “Ionization from a short-range potential under the action of a complex configuration,” Pis’ma Zh. Eksp. Teor. Fiz. 75, 435 (2002) [JETP Lett. 75, 363 (2002)].
20. A. M. Mandel’, V. B. Oshurko, and G. I. Solomakho, “On the localization by a magnetic field of single-electrons states in the neighborhood of fractional-dimension quantum dots,” Élektromag. Volny Élektron. Sis. No. 6, 67 (2014).
21. M. Dineykhan and R. G. Nazmitdinov, “Two-electron quantum dot in magnetic field: analytical results,” arXiv.org/abs/cond-mat/9704202v1 (1997).
22. N. E. Kaputkina, “Quantum dots in external fields,” in Eleventh Conference on Problems of the Physics of the Solid State and High Pressures, MISIS, Moscow, 10–19 September 2010.
23. S. V. Borzunov, M. V. Frolov, M. Yu. Ivanov, N. L. Manakov, S. S. Marmo, and A. F. Starace, “Zero-range-potential model for strong-field molecular processes: dynamic polarizability and photodetachment cross section,” Phys. Rev. A 88, 033410 (2013).
24. N. Jorner, C. Grimaldi, I. Balberg, and P. Ryser, “Transport exponent in a three-dimensional continuum tunneling-percolation model,” Phys. Rev. B 77, 174204 (2008).
25. K. S. Deepa, S. Kumari Nisha, P. Parameswaran, M. T. Sebastian, and J. James, “Effect of conductivity of filler on the percolation threshold of composites,” Appl. Phys. Lett. 94, 142902 (2009).
26. N. V. Bondar’ and M. S. Brodin, “Exciton photoluminescence and energy in a percolation cluster of ZnSe quantum dots as a fractal object,” Fiz. Tekh. Poluprovodn. 46, 644 (2012) [Semiconductors 46, 625 (2012)].
27. V. E. Adrianov, V. G. Maslov, A. V. Baranov, A. V. Fedorov, and M. V. Artem’ev, “Spectral study of the self-organization of quantum dots during the evaporation of colloidal solutions,” Opt. Zh. 78, No. 11, 11 (2011) [J. Opt. Technol. 78, 699 (2011)].
28. A. I. Nikishov and V. I. Ritus, “The effect of a laser field on nuclear decay and other processes that occur when there is no field,” Trudy Fiz. Inst. Akad. Nauk 168, 232 (1986).