УДК: 548.1.022
Photoelectric fields in lithium niobate crystals
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сюй А.В., Сидоров Н.В., Палатников М.Н., Штарев Д.С., Антонычева Е.А., Гапонов А.Ю., Чехонин К.А. Фотоэлектрические поля в кристаллах ниобата лития // Оптический журнал. 2015. Т. 82. № 5. С. 71–75.
Syuy A.V., Sidorov N.V., Palatnikov M.N., Shtarev D.S., Antonycheva E.A., Gaponov A.Yu., Chekhonin K.A. Photoelectric fields in lithium niobate crystals [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 5. P. 71–75.
A. V. Syuĭ, D. S. Shtarev, E. A. Antonycheva, A. Yu. Gaponov, K. A. Chekhonin, N. V. Sidorov, and M. N. Palatnikov, "Photoelectric fields in lithium niobate crystals," Journal of Optical Technology. 82(5), 319-322 (2015). https://doi.org/10.1364/JOT.82.000319
The angular-distribution parameters of the photoinduced scattering of light at a wavelength of 476.5 nm are used to determine the photovoltaic and diffusion field in nominally pure single crystals of stoichiometric composition (R=Li/Nb=1), grown from the melt with 58.6 mol% LiO2 (LiNbO3 stoich.), in nominally pure single crystals of congruent composition (LiNbO3) in congruent single crystals doped with Cu2+, Zn2+, Gd3+, Y3+, Er3+, B3+, (Cu2++Gd3+), and (Ta5++Mg2+). The photoinduced variations of the refractive index of the crystals are determined.
lithium niobate, photoinduced light scattering, photovoltaic field, diffusion field
OCIS codes: 190.5330
References:1. P. Guenter and J.-P. Huignard, Photorefractive Materials and Their Applications 1 (Springer, New York, 2007).
2. Yu. S. Kuz’minov, Lithium Niobate and Tantalate—Materials for Nonlinear Optics (Nauka, 1975).
3. N. V. Sidorov, D. V. Evstratova, M. N. Palatnikov, A. V. Syuy, A. Yu. Gaponov, and E. A. Antonycheva, “Investigation of lithium niobate photorefractive properties by photorefractive light scattering and Raman spectroscopy,” Ferroelectrics 413, 148 (2011).
4. N. V. Sidorov, E. A. Antonicheva, A. V. Syuy, M. N. Palatnikov, and K. Bormanis, “Kinetics of photorefractive light scattering in LiNbO3 :Cu and LiNbO3 :Zn single crystals,” Integr. Ferroelectrics 123, 153 (2011).
5. A. M. Glass, D. von der Linde, and T. J. Nergran, “High-voltage bulk photovoltaic effect and photorefractive process in LiNbO3,” Appl. Phys. 25, 233 (1974).
6. A. M. Glass and D. von der Linde, “Dependence of refractive index from lighting,” Ferroelectrics 10, 163 (1976).
7. V. V. Obukhovskiı˘ and A. V. Stoyanov, “Photoinduced scattering of light in crystals with local response,” Fiz. Tverd. Tela (Leningrad) 28, 405 (1986) [Sov. Phys. Solid State 28, 225 (1986)].
8. M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. 77, 235110 (2008).
9. A. V. Syuy, N. V. Sidorov, A. Y. Gaponov, M. N. Palatnikov, and V. G. Efremenko, “Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation,” Optik (Munich, Ger.) 124, 5259 (2013).
10. M. Goulkov and Th. Woike, “Photoelectric response in LiNbO3 :Fe versus Fe2+ /Fe3+ ratio studied by PILS method,” J. Opt. Soc. Am. 31, 1071 (2014).
11. M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Ya. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291, 390 (2006).
12. V. A. Maksimenko, A. V. Syuı˘, and Yu. M. Karpets, Photoinduced Processes in Lithium Niobate Crystals (FIZMATLIT, Moscow, 2008).
13. N. V. Sidorov, A. V. Syuı˘, M. N. Palatnikov, and V. T. Kalinnikov, “Three-layer speckle structure in the photorefractive single lithium niobate crystal,” Dok. Ross. Akad. Nauk 437, No. 3, 352 (2011).