ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.36, 535.34, 519.8

Using the Monte Carlo method to model radiation propagation and absorption in optically inhomogeneous biological media

For Russian citation (Opticheskii Zhurnal):

Красников И.В., Сетейкин А.Ю. Применение метода Монте-Карло для моделирования распространения и поглощения излучения в оптически неоднородных биологических средах // Оптический журнал. 2015. Т. 82. № 5. С. 76–85.

 

Krasnikov I.V., Seteykin A.Yu. Using the Monte Carlo method to model radiation propagation and absorption in optically inhomogeneous biological media [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 5. P. 76–85.

For citation (Journal of Optical Technology):

I. V. Krasnikov and A. Yu. Seteĭkin, "Using the Monte Carlo method to model radiation propagation and absorption in optically inhomogeneous biological media," Journal of Optical Technology. 82(5), 323-329 (2015). https://doi.org/10.1364/JOT.82.000323

Abstract:

The proposed model is based on the solution of the radiation-transport equation by the Monte Carlo method. A multilayer biological medium with included inhomogeneities of arbitrary shape is considered, to which a photon flux is directed. The proposed model makes it possible to calculate the absorbed density distribution of laser-radiation energy in multilayer materials.

Keywords:

Monte-Carlo method, radiation-transport equation, absorption, scattering, multilayer materials, biological tissue

Acknowledgements:

This work was carried out with th financial support of Grant No. 14-02-31029 “mol_a” of the Russian Foundation for Basic Research.

OCIS codes: 170.3660, 170.7050

References:

1. V. V. Tuchin, Optical Biomedical Diagnostics, Vol. 1 (Fiz-Mat. Lit., Moscow, 2007).
2. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
3. A. D. Bassi, C. Andrea, G. Valentini, R. Cubeddu, and S. R. Arridge, “Propagation of spatial information in turbid media,” Opt. Lett. 33, 2836 (2008).
4. I. Meglinski and A. V. Doronin, “Monte Carlo modeling for the needs of biophotonics and biomedical optics,” in Advanced Biophotonics: Tissue Optical Sectioning, eds. V. V. Tuchin and R. K. Wang (CRC Press, Boca Raton, Fla., 2012), Chap. 1, pp. 1–72.
5. D. G. Fischer, S. A. Prahl, and D. D. Duncan, “Monte Carlo modeling of spatial coherence: free-space diffraction,” IEEE J. Sel. Top. Quantum Electron. 25, 2571 (2008).
6. S. Jacques and L. Wang, “Monte Carlo modeling of light transport in tissue,” in Optical-Thermal Response of Laser-Irradiated Tissue, eds. A. J. Welch and M. J. C. Van Gemert (Plenum, New York, 1996), Vol. 12, pp. 73–100.
7. G. Kumar and J. Schmitt, “Micro-optical properties of tissue,” Proc. SPIE 2679, 106 (1996).
8. A. Doronin and I. Meglinski, “Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics,” J. Biomed. Opt. 17, 090504 (2013).
9. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML: Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Prog. Biomed. 47, 131 (1995).
10. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV: convolution for responses to a finite diameter photon beam incident on multilayered tissues,” Comput. Methods Prog. Biomed. 54, 141 (1997).
11. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon, New York, 1999).
12. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824 (1983).
13. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte-Carlo modeling of light-propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162 (1989).
14. G. I. Petrov, A. Doronin, H. T. Whelan, I. Meglinski, and V. V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express 3, 2154 (2012).
15. V. O. Korhonen, T. S. Myllyla, M. Yu. Kirillin, A. P. Popov, A. V. Bykov, A. V. Gorshkov, E. A. Sergeeva, M. Kinnunen, and V. Kiviniemi, “Light propagation in NIR spectroscopy of the human brain,” IEEE J. Sel. Top. Quantum Electron. 20, 7100310 (2010).
16. H. Shen and G. Wang, “A study on tetrahedron-based inhomogeneous Monte Carlo optical simulation,” Biomed. Opt. Express 2, 44 (2011).
17. I. Krasnikov, A. Seteikin, E. Drakaki, and M. Makropoulou, “Thermal distribution in biological tissue at laser-induced fluorescence and photodynamic therapy,” Proc. SPIE 8337, 83370 (2011).
18. I. Krasnikov, A. Seteikin, and I. Bernhardt, “Thermal processes in red blood cells exposed to infrared laser tweezers (λ = 1064 nm),” J. Biophotonics 4, 206 (2011).
19. I. Krasnikov, A. Popov, A. Seteikin, and R. Myllyla, “Influence of titanium dioxide nanoparticles on skin surface temperature at sunlight irradiation,” Biomed. Opt. Express 2, 3278 (2011).
20. M. S. Pavlov, I. V. Krasnikov, and A. Yu. Seteı˘kin, “Monte Carlo modelling of optical-radiation propagation in biological media with closed internal inhomogeneities,” Opt. Zh. 77, No. 10, 15 (2010) [J. Opt. Technol. 77, 602 (2010)].
21. K. König, “Laser tweezers and multiphoton microscopes in life sciences,” Histochem. Cell Biol. 114, 79 (2000).
22. K. König, Y. Tadir, P. Patrizio, M. W. Berns, and B. J. Tromberg, “Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa,” Hum. Reprod. 11, 2162 (1996).
23. K. König, H. Liang, M. W. Berns, and B. Tromberg, “Cell damage by near IR beams,” Nature 377, 20 (1995).