УДК: 621.373
Study of the apodization of a laser beam by serrated aperture stops for high-power installations of laser thermonuclear synthesis
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бельков С.А., Воронич И.Н., Гаранин С.Г., Зималин Б.Г., Рукавишников Н.Н., Савкин А.В., Шаров О.А. Исследование аподизации лазерного пучка зубчатыми апертурными диафрагмами для мощных установок лазерного термоядерного синтеза // Оптический журнал. 2015. Т. 82. № 6. С. 3–13.
Belkov S.A., Voronich I.N., Garanin S.G., Zimalin B.G., Rukavishnikov N.N., Savkin A.V., Sharov O.A. Study of the apodization of a laser beam by serrated aperture stops for high-power installations of laser thermonuclear synthesis [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 6. P. 3–13.
S. A. Bel’kov, I. N. Voronich, S. G. Garanin, B. G. Zimalin, N. N. Rukavishnikov, A. V. Savkin, and O. A. Sharov, "Study of the apodization of a laser beam by serrated aperture stops for high-power installations of laser thermonuclear synthesis," Journal of Optical Technology. 82(6), 330-338 (2015). https://doi.org/10.1364/JOT.82.000330
The formation of the spatial intensity profile of a laser beam in a system consisting of a square serrated aperture stop and a spatial filter has been studied. This paper discusses how various shapes of the serrations of the stop, as well as various radiation-selection angles in the spatial filter, affect the resulting beam profile. The far fields of the beams formed by the serrated stops are analyzed. Special attention is paid to the question of maintaining the spatial structure of apodized beams when they freely propagate in space.
beam spatial profile, square aperture, apodization, serrated stop, angular selection
OCIS codes: 110.1220, 110.6980, 140.3300
References:1. B. M. Van Wonterghem, J. R. Murray, J. H. Campbell, D. R. Speck, C. E. Barker, I. C. Smith, D. F. Browning, and W. C. Behrendt, “Performance of a prototype for a large-aperture multipass Nd:glass laser for inertial confinement fusion,” Appl. Opt. 36, 4932 (1997).
2. N. F. Borisova, M. A. Gavrilova, B. S. Guba, A. D. Starikov, and V. K. Él’ts, “Formation of a laser beam with a uniform spatial distribution,” Kvant. Elektron. (Moscow) 18, 355 (1991) [Sov. J. Quantum Electron. 21, 322 (1991)].
3. B. M. Van Wonterghem, J. T. Salmon, and R. W. Wilcox, “Beamlet pulse-generation and wavefront-control system,” Inertial Confinement Fusion 5, No. 1, 45 (1995).
4. A. A. Mak, L. N. Soms, V. A. Fromzel’, and V. E. Yashin, Neodymium Glass Lasers (Nauka, Moscow, 1976).
5. V. I. Kryzhanovskiı˘, B. M. Sedov, V. A. Serebryakov, A. D. Tsvetkov, and V. E. Yashin, “Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures,” Kvant. Elektron. (Moscow) 10, 354 (1983) [Sov. J. Quantum Electron. 13, 194 (1983)].
6. G. S. Lukishova, N. R. Minuéı˘ Mendez, and T. V. Tulaı˘kova, “Investigation of a soft aperture formed by photooxidation of a rare-earth impurity in fluorite and used as an intracavity component in a YAG:Er3+ laser,” Kvant. Elektron. (Moscow) 21, 126 (1994) [Quantum Electron. 24, 117 (1994)].
7. A. I. Nepomnyashchikh, A. G. Tokarev, P. V. Figura, and B. P. Chernyago, “Material for an apodizing stop and a method for fabricating it,” Russian Federation Patent No. 2,032,193 (1990).
8. A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaı˘kin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Kvant. Elektron. (Moscow) 35, 302 (2005) [Sov. J. Quantum Electron. 35, 302 (2005)].
9. M. Barczys, S.-W. Bahk, M. Spilatro, D. Coppenbarger, E. Hill, T. H. Hinterman, R. W. Kidder, J. Puth, T. Touris, and J. D. Zuegel, “Deployment of a spatial light modulator-based beam-shaping system on the OMEGA EP laser,” Proc. SPIE 8602, 86020F (2013).
10. J. M. Auerbach and V. M. Karpenko, “Serrated-aperture apodizers for high-energy laser systems,” Appl. Opt. 33, 3179 (1994).
11. J. B. Trenholme, Laser program, Lawrence Livermore National Laboratory, P.O. Box 5508, Livermore, Calif. 94550, USA (personal communication, 1 March 1978).
12. I. V. Epatko, A. A. Malyutin, R. V. Serov, D. A. Solov’ev, and A. D. Chulkin, “New algorithm for numerical simulation of the propagation of laser radiation,” Kvant. Elektron. (Moscow) 25, 717 (1998) [Quantum Electron. 28, 697 (1998)].
13. G. S. Landsberg, Optics (Nauka, Moscow, 1976).
14. S. G. Garanin, A. I. Zaretskiı˘, R. I. Il’kaev, G. A. Kirillov, G. G. Kochemasov, R. F. Kurunov, V. M. Murugov, and S. A. Sukharev, “Channel of the high-power laser fusion ‘Luch’ facility emitting 3.3-kJ, and 4-ns pulses,” Kvant. Elektron. (Moscow) 35, 299 (2005) [Quantum Electron. 35, 299 (2005)].