УДК: 520.27, 681.518.3
Forming a dynamic adjustment algorithm for the radio-optical system of a large terrestrial fully steerable radio telescope
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сударчиков С.А., Ушаков А.В. Формирование алгоритма динамической юстировки радиооптической системы большого наземного полноповоротного радиотелескопа // Оптический журнал. 2015. Т. 82. № 6. С. 52–57.
Sudarchikov S.A., Ushakov A.V. Forming a dynamic adjustment algorithm for the radio-optical system of a large terrestrial fully steerable radio telescope [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 6. P. 52–57.
S. A. Sudarchikov and A. V. Ushakov, "Forming a dynamic adjustment algorithm for the radio-optical system of a large terrestrial fully steerable radio telescope," Journal of Optical Technology. 82(6), 369-373 (2015). https://doi.org/10.1364/JOT.82.000369
This article discusses the problem of forming a dynamic adjustment algorithm for the radio-optical system of a large terrestrial fully steerable radio telescope that can be carried out in its operating regime under conditions of deformation of the elements of the metallic structures of the radio telescope, generated by external effects. The adjustment algorithm is based on the concept of an equivalent radio lens whose optical parameters are formed by the methods of matrix optics in Kogel’nik’s basis. These results are illustrated, using as an example a terrestrial fully steerable radio telescope with a primary reflector 64 m in diameter, produced in this country.
radio telescope, radio-optical system, equivalent radio lens, deformation, dynamic adjustment algorithm
OCIS codes: 208.5600, 150.1135
References:1. W. N. Christiansen and J. A. Hogbom, “Radio telescopes,” Astron. Nachr. 310, No. 1, 28 (1989).
2. P. V. Belyanskiı˘ and B. G. Sergeev, Control of Terrestrial Antennas and Radio Telescopes (Sov. Radio, Moscow, 1980).
3. A. M. Pokras, A. M. Somov, and G. G. Tsurikov, Antennas of Satellite-Communications Earth Stations (Radio i Svyaz’, Moscow, 1985).
4. “Large antennas,” http://www.kik‑sssr.ru/Large_antenns.htm.
5. I. E. Molotov, Yu. I. Gorshenkov, and B. A. Poperechenko, “VLBI-activity of ASC on Russian Deep Space Tracking Network,” in Proceedings of the Technical Workshop for APT and APSG, Kashima, 1996, pp. 281–288.
6. “Creating a radio-interferometer complex based on the RT-64 Kalyazin radio telescope for astrophysical research with superhigh angular resolution,” International Scientific and Engineering Center, http://www.ISTC.ru.
7. V. V. Dubarenko and A. Yu. Kuchmin, “Method of increasing the aiming quality of a large millimeter-range radio telescope with an adaptive mirror system,” Informats. Uprav. Sist. No. 5, 14 (2007).
8. A. Ushakov and S. Sudarchikov, Tracking Monitoring of the Deformations of Spatial-Observation Devices: Development of Control Algorithms (LAP LAMBERT Academic Publishing, Saarbrucken, 2011).
9. Yu. N. Artemenko, V. G. Gimmel’man, A. E. Gorodetskiı˘, V. V. Dubarenko, G. S. Kuchinskiı˘, A. Yu. Kuchmin, A. P. Mozgov, and A. A. Parshikov, “System for automatic aiming of a radio telescope,” Russian Patent No. 2006125897 (2007).
10. A. Yu. Kuchmin, “High-speed gradient method application for control of electromechanical antenna pointing drive,” in Second International Conference on Physics and Control, Saint-Petersburg, 2005.
11. G. S. Landsberg, Optics (Fizmatlit, Moscow, 2008).
12. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, New York, 1975; Mir, Moscow, 1978).
13. A. V. Ushakov and S. Alisherov, “Evaluation of the effect of misadjustment in an optical channel and turbulence of the propagation medium on the tracking quality of a PETS [photoelectric tracking system],” Opt. Zh. 8, No. 3, 24 (1991) [Sov. J. Opt. Technol. 58, 141 (1991)].