УДК: 535.3
Calculating the spatial fluorescence distribution of a thick fluorophore layer in a multichannel confocal microscope
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бессмельцев В.П., Терентьев В.С. Расчет пространственного распределения флуоресценции толстого слоя флуорофора в многоканальном конфокальном микроскопе // Оптический журнал. 2015. Т. 82. № 6. С. 58–65.
Bessmeltsev V.P., Terentiev V.S. Calculating the spatial fluorescence distribution of a thick fluorophore layer in a multichannel confocal microscope [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 6. P. 58–65.
V. P. Bessmel’tsev and V. S. Terent’ev, "Calculating the spatial fluorescence distribution of a thick fluorophore layer in a multichannel confocal microscope," Journal of Optical Technology. 82(6), 374-379 (2015). https://doi.org/10.1364/JOT.82.000374
The propagation of rays in the optical system of a multichannel confocal microscope is numerically modelled in the Gaussian approximation, making it possible to estimate the shape of the image profile of a focused laser beam in a thick phosphor layer. The proposed method creates the possibility of calculating the signal-to-background-illumination-noise ratio of a confocal system in the case of a large number of parallel channels without using extensive computer resources. The results are compared with experimental measurements made by successively scanning a thick fluorophore layer in depth.
multichannel confocal microscope, Gaussian beams
OCIS codes: 180.1790, 000.4430
References:1. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, Boston, 1995).
2. K. Kagawa, M. W. Seo, K. Yasutomi, S. Terakawa, and S. Kawahito, “Multi-beam confocal microscopy based on a custom image sensor with focal-plane pinhole array effect,” Opt. Express 21, 1417 (2013).
3. T. Shimozawa, K. Yamagata, T. Kondo, T. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. USA 110, 3399 (2013).
4. D. R. Sandison and W. W. Webb, “Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes,” Appl. Opt. 33, 603 (1994).
5. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1970; Nauka, Moscow, 1973).
6. G. J. R. Sheppard and H. J. Matthews, “Imaging in high-aperture optical systems,” J. Opt. Soc. Am. A 4, 1354 (1987).
7. F. Johnson, “An improved method for computing a discrete Hankel transform,” Comput. Phys. Commun. 43, 181 (1987).
8. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550 (1966).
9. A. Egner, V. Andresen, and S. W. Hell, “Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment,” J. Microsc. 206, 24 (2001).
10. B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46, 1819 (2007).
11. T. F. Johnston, “Beam propagation (M2) measurement made as easy as it gets: the four-cuts method,” Appl. Opt. 37, 4840 (1998).
12. I. S. Gradstein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Academic, New York, 1980; Moscow, 1963).
13. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Wiley, New York, 1972; Nauka, Moscow, 1979).
14. Y. Q. Guan, Y. Y. Cai, X. Zhang, Y. T. Lee, and M. Opas, “Adaptive correction technique for 3D reconstruction of fluorescence microscopy images,” Microsc. Res. Tech. 71, 146 (2008).
15. http://www.pnas.org/content/110/9/3399/suppl/DCSupplemental.