ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.399

Luminescent fibers with molecular clusters of silver for measuring the refractive index of the ambient medium

For Russian citation (Opticheskii Zhurnal):

Агафонова Д.С., Сидоров А.И., Эттувэгыргина М.Г. Люминесцентные волокна с молекулярными кластерами серебра для измерения показателя преломления окружающей среды // Оптический журнал. 2015. Т. 82. № 6. С. 66–71.

 

Agafonova D.S., Sidorov A.I., Ettuvegyrgina M.G. Luminescent fibers with molecular clusters of silver for measuring the refractive index of the ambient medium [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 6. P. 66–71.

For citation (Journal of Optical Technology):

D. S. Arafonova, A. I. Sidorov, and M. G. Éttuvégyrgina, "Luminescent fibers with molecular clusters of silver for measuring the refractive index of the ambient medium," Journal of Optical Technology. 82(6), 380-384 (2015). https://doi.org/10.1364/JOT.82.000380

Abstract:

The experimental results presented here show that the use of luminescent multimode fibers in sensors of the refractive index of the ambient medium makes it possible to substantially increase their sensitivity to variation of the medium’s refractive index. Experiments have been carried out with fibers made from silicate glass containing luminescent centers in the form of neutral molecular clusters of silver. The sensitivity is increased because more high-order modes are excited when the fiber captures the radiation of luminescent centers in the fiber than when the waveguide modes are excited through the ends of the fiber. The results of numerical modelling show that the sensitivity is appreciably increased for modes with index N≥100.

Keywords:

luminescence, optical fiber, molecular cluster, silver, refractive index sensor

Acknowledgements:

This work was carried out with the financial support of the Russian Scientific Foundation (Contract No. 14-23-00136).

OCIS codes: 160.2540, 160.5690, 280.4788

References:

1. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610 (2007).
2. X. Guo and L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429 (2008).
3. L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, “Simulation of optical microfiber loop resonators for ambient refractive-index sensing,” Sensors 7, 689 (2007).
4. R. A. Lieberman, ed., “Chemical, biochemical, and environmental fiber sensors V,” Proc. SPIE 2068 (1994).
5. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “Coated long-period fiber gratings as high-sensitivity optochemical sensors,” J. Lightwave Technol. 24, 1776 (2006).
6. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg-grating refractive-index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
7. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenback, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach–Zehnder biosensor,” J. Lightwave Technol. 16, 583 (1998).
8. N. Kinrot and M. Nathan, “Investigation of a periodically segmented waveguide Fabry–Pérot interferometer for use as a chemical biosensor,” J. Lightwave Technol. 24, 2139 (2006).
9. W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215 (1991).
10. D. Monzón-Hernández and J. Villatoro, “High-resolution refractive-index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B 115, 227 (2006).
11. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14, 7063 (2006).
12. F. Gao, H. Liu, C. Sheng, C. Zhu, and S. N. Zhu, “Refraction-index sensor based on the leaky radiation of microfiber,” Opt. Express 22, 12645 (2014).
13. A. I. Ignat’ev, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, “Influence of UV irradiation and heat treatment on the luminescence of molecular silver clusters in photothermorefractive glasses,” Opt. Spektrosk. 114, 838 (2013) [Opt. Spectrosc. 114 769, (2013)].
14. E. V. Kolobkova, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, “Luminescence of molecular silver clusters in oxyfluoride glasses,” Opt. Spektrosk. 114, 260 (2013) [Opt. Spectrosc. 114, 236 (2013)].
15. I. A. Demichev, V. I. Egorov, E. S. Postnikov, E. M. Sgibnev, A. I. Sidorov, and T. A. Khrushcheva, “The effect of cerium ions on the absorption and luminescence of molecular clusters of silver in silicate glasses after ion exchange,” Nauchn. Tekhn. Vestn. ITMO No. 2, 27 (2013).
16. D. S. Agafonova, V. I. Egorov, A. I. Ignat’ev, and A. I. Sidorov, “The effect of temperature on the luminescence of molecular clusters of silver in photothermorefractive glasses,” Opt. Zh. 80, No. 8, 51 (2013) [J. Opt. Technol. 80, 506 (2013)].
17. A. I. Ignat’ev, E. M. Sgibnev, I. A. Demichev, N. V. Nikonorov, A. I. Sidorov, T. A. Khrushcheva, and T. A. Shakhverdov, “Specific features of the luminescence of silicate glasses with silver introduced by ion exchange,” Opt. Spektrosk. 116, 120 (2014) [Opt. Spectrosc. 116, 587 (2014)].
18. V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photothermorefractive glasses,” Opt. Mater. (Amsterdam) 36, 753 (2014).
19. V. D. Dubrovin, A. I. Ignat’ev, N. V. Nikonorov, and A. I. Sidorov, “Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses,” Zh. Tekh. Fiz. 84, No. 5, 106 (2014) [Tech. Phys. 59, 733 (2014)].
20. D. S. Agafonova, E. V. Kolobkova, N. V. Nikonorov, and A. I. Sidorov, “The effect of ions of rare-earth metals on the temperature dependence of the luminescence of molecular clusters of silver in oxyfluoride glasses,” Opt. Zh. 81, No. 7, 59 (2014) [J. Opt. Technol. 81, 408 (2014)].
21. N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiı˘, and T. A. Shakhverdov, “Broadband copper luminescence in potassium–aluminum borate glasses,” Opt. Spektrosk. 114, 417 (2013) [Opt. Spectrosc. 114, 379 (2013)].
22. A. N. Babkina, N. V. Nikonorov, A. I. Sidorov, P. S. Shirshnev, and T. A. Shakhverdov, “The effect of temperature on the luminescence spectra ofpotassium–aluminum borate and silicate glasses with copper(I) and silver ions,” Opt. Spektrosk. 116, 93 (2014) [Opt. Spectrosc. 116, 84 (2014)].
23. A. N. Babkina, A. I. Sidorov, and P. S. Shirshnev, “Thermochromic effect in aluminoborate glasses with copper (I) and chlorine ions,” Opt. Zh. 81, No. 1, 66 (2014) [J. Opt. Technol. 81, 50 (2014)].
24. A. N. Babkina, N. V. Nikonorov, T. A. Shakhverdov, P. S. Shirshnev, and A. I. Sidorov, “Luminescent thermochromism in potassium-alumina-borate glass with copper-containing molecular clusters at elevated temperatures,” Opt. Mater. (Amsterdam) 36, 773 (2014).
25. E. V. Kolobkova, D. S. Kukushkin, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, “The effect of heat treatment on the luminescence of fluorophosphate glasses with molecular clusters of cadmium sulfide,” Fiz. Khim. Stekla 41, 140 (2015).
26. E. V. Kolobkova, D. S. Kukushkin, N. V. Nikonorov, T. A. Shakhverdov, A. I. Sidorov, and V. N. Vasiliev, “Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters,” J. Lumin. 162, 36 (2015).
27. E. V. Kolobkova, D. S. Kukushkin, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, “Luminescent properties of fluorophosphate glasses with molecular cadmium selenide clusters,” Opt. Spektrosk. 118, 237 (2015) [Opt. Spectrosc. 118, 224 (2015)].
28. D. S. Agafonova, E. V. Kolobkova, and A. I. Sidorov, “Temperature dependence of the luminescence intensity in optical fibers of oxyfluoride glass with CdS and CdSx Se1−x quantum dots,” Pis’ma Zh. Tekh. Fiz. 39, No. 14, 8 (2013) [Tech. Phys. Lett. 39, 629 (2013)].
29. I. Díez and R. H. A. Ras, “Fluorescent silver nanoclusters,” Nanoscale 3, 1963 (2011).
30. A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
31. S. Fedrigo, W. Harbich, and J. Buttet, “Optical response of Ag2 , Ag 3 , Au2 , and Au 3 in argon matrices,” Chem. Phys. 99, 5712 (1993).
32. C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, and G. Ertl, “Fluorescence and excitation spectra of Ag4 in an argon matrix,” Chem. Phys. Lett. 313, 105 (1999).
33. W. Zheng and T. Kurobori, “Assignments and optical properties of X-ray-induced color centers in blue and orange radiophotoluminescent silver-activated glasses,” J. Lumin. 131, 36 (2011).
34. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981; Mir, Moscow, 1984).
35. C. Y. H. Tsao, D. N. Payne, and W. A. Gambling, “Modal characteristics of three-layered optical fiber waveguides: a modified approach,” J. Opt. Soc. Am. A 6, 555 (1989).