УДК: 612.563 57.089.2 616-71
Method of differentiated analysis of IR thermal maps of the exposed cerebral cortex when neurosurgical operations are being performed
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Макаренко А.В., Воловик М.Г. Метод дифференцированного анализа ИК термокарт открытой коры головного мозга при проведении нейрохирургических операций // Оптический журнал. 2015. Т. 82. № 7. С. 80–89.
Makarenko A.V., Volovik M.G. Method of differentiated analysis of IR thermal maps of the exposed cerebral cortex when neurosurgical operations are being performed [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 7. P. 80–89.
A. V. Makarenko and M. G. Volovik, "Method of differentiated analysis of IR thermal maps of the exposed cerebral cortex when neurosurgical operations are being performed," Journal of Optical Technology. 82(7), 459-466 (2015). https://doi.org/10.1364/JOT.82.000459
This paper proposes an approach to the differentiated analysis of the temperature characteristics of exposed human dura mater and cerebral cortex within the operational window when intracerebral tumors are being removed. The key features of the method are the following: Taking into account the complex shape of the regions to be analyzed, extensive automation of batch processing of the IR thermal maps, operation with sizable samples (more than forty patients), and the use of rigorous statistical estimates. The central problem of using the technique developed here is how to analyze the data on the dynamics of thermal patterns in response to a cold test.
thermal vision, cerebral cortex, dura mater, brain tumor, brain temperature, image processing, mathematical morphology
OCIS codes: 000.1430, 110.3080, 120.6780, 170.3880, 330.4270, 330.5000
References:1. J. H. Choi, “A reliable and valid tool to noninvasively measure brain temperature: the missing link,” J. Appl. Physiol. 110, 575 (2011).
2. H. Wang, B. Wang, K. P. Normoyle, K. Jackson, K. Spitler, M. F. Sharrock, C. M. Miller, C. Best, D. Llano, and F. Du, “Brain temperature and its fundamental properties: a review for clinical neuroscientists,” Front. Neurosci. 8, 307 (2014).
3. M. Zhu, J. J. Ackerman, and D. A. Yablonskiy, “Body and brain temperature coupling: the critical role of cerebral blood flow,” J. Comp. Physiol. 179, 701 (2009).
4. C. M. Smith, P. D. Adelson, Y. F. Chang, S. D. Brown, P. M. Kochanek, R. S. Clark, H. Bayir, J. Hinchberger, and M. J. Bell, “Brain-systemic temperature gradient is temperature-dependent in children with severe traumatic brain injury,” Pediatr. Crit. Care Med. 12, 449 (2011).
5. R. Melzack, J. Stewart, and R. Bambridge, “Infrared thermograph studies of cortical circulation: evaluation of the method,” Electroencephalogr. Clin. Neurophysiol. 20, 614 (1966).
6. S. N. Kolesov, L. B. Likhterman, and A. P. Fraerman, “On the mechanisms of temperature asymmetries of the skin of the head accompanying focal damage to the brain,” Voprosy Neı˘rokh. im. N. N. Burdenko 1, 33 (1985).
7. A. M. Gorbach, J. D. Heiss, L. Kopylev, and E. H. Oldfield, “Intraoperative infrared imaging of brain tumors,” J. Neurosurg. 101, 960 (2004).
8. B. Kateb, V. Yamamoto, C. Yu, W. Grundfest, and J. P. Gruen, “Infrared thermal imaging: a review of the literature and case report,” Neuroimage 47, 154 (2009).
9. J. Hollmach, N. Hoffman, Ch. Schnabel, S. Kuchler, S. Sobottka, M. Kirsch, G. Schackert, E. Koch, and G. Steiner, “Highly sensitive time-resolved thermography and multivariate image analysis of the cerebral cortex for intrasurgical diagnostics,” Proc. SPIE 8565, 856550 (2013).
10. V. Senger, L. Schierling, J. Muller, and R. Tetzlaff, “CNN-based movement correction in thermography for intrasurgical diagnostics,” in Fourteenth International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), Notre Dame, IN, USA, 29–31 July 2014, p. 1–2.
11. P. Mellergard, “Intracerebral temperature in neurosurgical patients: intracerebral temperature gradients and relationships to consciousness level,” Surg. Neurol. 43, 91 (1995).
12. A. M. Gorbach, J. D. Heiss, C. Kufta, S. Sato, P. Fedio, W. A. Kammerer, J. Solomon, and E. H. Oldfield, “Intraoperative infrared functional imaging of human brain,” Ann. Neurol. 54, 297 (2003).
13. J. G. Stone, R. R. Goodman, K. Z. Baker, C. J. Baker, and R. A. Solomon, “Direct intraoperative measurement of human brain temperature,” Neurosurgery 41, 20 (1997).
14. G. Steiner, S. B. Sobottka, E. Koch, G. Schackert, and M. Kirsch, “Intraoperative imaging of cortical cerebral perfusion by time-resolved thermography and multivariate data analysis,” J. Biomed. Opt. 16, 016001 (2011).
15. M. G. Volovik and A. V. Makarenko, “Parameters of the thermal patterns of the exposed cortex from the results of IR thermal mapping when removing tumors from the human brain,” J. Opt. Technol. 82, No. 7, 467 (2015) [Opt. Zh. 82, 90 (2015)].
16. L. Ya. Kravets, M. G. Volovik, S. N. Kolesov, V. V. Berezina, and A. Yu. Sheludyakov, “Method of estimating the reactivity of the vessels of the cortex of the peritumoral zone of supratentorial tumors,” Russian Federation Patent No. 2,269,287 (2/10/2006).
17. J. I. Ausman, P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, G. Balakrishnan, G. M. Malik, and R. F. Ghaly, “Cerebral oxygen metabolism during hypothermic arrest in humans,” J. Neurosurg. 79, 810 (1993).
18. E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses (Springer, New York, 2008; Moscow, Nauka, 1979).
19. V. E. Johnson, “Revised standards for statistical evidence,” Proc. Natl. Acad. Sci. U.S.A. 110, 19313 (2013).
20. A. V. Gribkov, M. G. Volovik, N. Y. Rufova, and L. M. Bakunin, “Thermographic control of the initial narcosis adequacy for the patients with space-occupying brain lesions,” Proc. SPIE 2106, 115 (1992).