УДК: 004.272.2 519.245
Implementation of the sequential Monte Carlo method in systems with massive parallelism for processing images in optical coherent tomography
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Скаков П.С., Гуров И.П. Реализация последовательного метода Монте-Карло в системах с массовым параллелизмом для обработки изображений в оптической когерентной томографии // Оптический журнал. 2015. Т. 82. № 8. С. 61–65.
Skakov P.S., Gurov I.P. Implementation of the sequential Monte Carlo method in systems with massive parallelism for processing images in optical coherent tomography [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 8. P. 61–65.
P. S. Skakov and I. P. Gurov, "Implementation of the sequential Monte Carlo method in systems with massive parallelism for processing images in optical coherent tomography," Journal of Optical Technology. 82(8), 538-541 (2015). https://doi.org/10.1364/JOT.82.000538
This paper discusses features of the use of systems with massive parallelism, using as an example graphic processors for the efficient implementation of the sequential Monte Carlo method (SMCM) in the case of data processing in optical coherent tomography. The dependence of the response rate of the SMCM implementations is studied in various software and hardware configurations. It is shown that it is expedient to use the OpenCL platform to implement the SMCM, including the case in which only a general-purpose processor is used. It is shown that computations are efficient on graphical processors, and this made it possible to process a three-dimensional tomographic image with a size of 1280×1022×376 readings in 30 sec, using the SMCM.
sequential Monte Carlo method, GPGPU, interferometric signals analysis
Acknowledgements:This work was carried out with the support of the Ministry of Education and Science of the Russian Federation.
OCIS codes: 100.2000 100.6950
References:1. M. A. Volynskiı˘, I. P. Gurov, P. A. Ermolaev, and P. S. Skakov, “Dynamic estimation of the parameters of interferometric signals based on the sequential Monte Carlo method,” Nauch. Tekhn. Vest. Informats. Tekhnol. Mekh. Opt. 91, No. 3, 18 (2014).
2. M. A. Volynskiı˘, I. P. Gurov, P. A. Ermolaev, and P. S. Skakov, “Study of biological objects in optical coherent tomography with data processing by the sequential Monte Carlo method,” Nauch. Tekhn. Vest. Informats. Tekhnol. Mekh. Opt. 92, No. 4, 23 (2014).
3. D. Simon, Optimal State Estimation (Wiley, New York, 2006).
4. I. P. Gurov, “Optical coherent tomography: principles, problems, and prospects,” in Problems of Coherent and Nonlinear Optics, I. P. Gurov and S. A. Kozlov, eds. (SPbGU ITMO, St. Petersburg, 2004), pp. 6–30.
5. M. A. Volynskiı˘, I. P. Gurov, and P. S. Skakov, “Recursion algorithm for processing interferometric signals based on the multicloud prediction model,” Nauch. Tekhn. Vest. Informats. Tekhnol. Mekh. Opt. 92, No. 4, 18 (2014).
6. P. S. Skakov, “Dynamic estimation of the parameters of interferometric systems and signals, based on the sequential Monte Carlo method,” Author’s Abstract for Candidate’s Dissertation, ITMO (2014).
7. G. Marsaglia and T. A. Bray, “A convenient method for generating normal variables,” SIAM Rev. 6, 260 (1964).
8. G. Marsaglia and W. W. Tsang, “The ziggurat method for generating random variables,” J. Stat. Softw. 5, No. 8, 1 (2000).