ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535

How optical surface inhomogeneities of the input end of a lightguide affect the excited modal composition of radiation

For Russian citation (Opticheskii Zhurnal):

Кизеветтер Д.В., Малюгин В.И. Влияние оптических неоднородностей поверхности входного торца световода на возбуждаемый модовый состав излучения // Оптический журнал. 2015. Т. 82. № 9. С. 41–47.

 

Kiesewetter D.V., Malyugin V.I. How optical surface inhomogeneities of the input end of a lightguide affect the excited modal composition of radiation [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 9. P. 41–47.

For citation (Journal of Optical Technology):

D. V. Kizevetter and V. I. Malyugin, "How optical surface inhomogeneities of the input end of a lightguide affect the excited modal composition of radiation," Journal of Optical Technology. 82(9), 607-611 (2015). https://doi.org/10.1364/JOT.82.000607

Abstract:

The influence of optical inhomogeneities at the end of a fiber lightguide on the modal composition of the propagating radiation is analyzed. Estimates are obtained for describing the resulting effects, and the modal composition in a short section of a lightguide with various heights of the surface roughness of the input end is experimentally studied. A technique is proposed for using light-scattering lacquer to standardize the measurements of the lightguide parameters.

Keywords:

fiber lightguide, optical inhomogeneity, modal composition, scattering, measurements standardization

OCIS codes: 060.2270, 120.3940, 240.5770

References:

1. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer, New York, 2008).
2. O. I. Kotov, I. E. Chapalo, and A. V. Medvedev, “Dependence of the signal of a multimode fiber-optic interferometer on the mode power distribution,” Tech. Phys. Lett. 40, 509 (2014) [Pis’ma Zh. Tekh. Fiz. 40, No. 12, 31 (2014)].
3. A. I. Kugushev, A. A. Kerimov, and M. Ya. Yakovlev, “Differential characteristics of multimode gradient fiber lightguides and methods of measuring them,” Zarub. Radioélek. No. 7, 54 (1983).
4. D. V. Kizevetter and V. I. Malyugin, “Method of exciting the modes of a multimode fiber lightguide while making measurements of its parameters,” USSR Inventor’s Certificate 1,509,793, Byull. Izobr. No. 335 (1989).
5. D. V. Kizevetter and V. I. Malyugin, “How the surface roughness of the end of a lightguide affects the electromagnetic-radiation input efficiency,” Sov. Phys. Tech. Phys. 31, 39 (1986) [Zh. Tekh. Fiz. 56, 68 (1986)].
6. D. V. Kizevetter and V. I. Malyugin, “Effect of defects on the end face of a fiber on the radiation input efficiency,” Tech. Phys. 47, 1145 (2002) [Zh. Tekh. Fiz. 72, No. 9, 80 (2002)].
7. D. V. Kizevetter, “Approximating the angular transfer responses of fiber lightguides,” J. Opt. Technol. 74, 592 (2007) [Opt. Zh. 74, No. 9, 20 (2007)].
8. A. W. Snyder, “Excitation and scattering of modes on a dielectric or optical fiber,” IEEE Trans. Microwave Theory Tech. 17, 1138 (1969).
9. D. V. Kizevetter, “Numerical simulation of a speckle pattern formed by radiation of optical vortices in a multimode optical fibre,” Quantum Electron. 38, 172 (2008) [Kvant. Elektron. (Moscow) 38, 172 (2008)].
10. M. S. Sodkha and A. K. Gkhatak, Inhomogeneous Optical Waveguides (Izd. Svyaz’, Moscow, 1980).
11. B. R. Levin, Theoretical Principles of Statistical Electronic Engineering (Izd. Sov. Radio, Moscow, 1974).
12. L. Jeunhomme and J. P. Pocholle, “Experimental determination of the radiation pattern of optical fibres,” Opt. Commun. 12, 89 (1974).
13. A. S. Toporets, The Optics of a Rough Surface (Izd. Mashinostroenie, Leningrad, 1988).
14. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon Press, Oxford, 1963).
15. D. V. Kizevetter, M. Ya. Litvak, and V. I. Malyugin, “The connection of the characteristics of scattered radiation with the structure of surface microrelief,” in Problems of Physical Electronics (Leningrad, 1991), pp. 120–165.
16. V. I. Malyugin and M. Ya. Litvak, “White light scattering from non-Gaussian rough surfaces,” Opt. Spectrosc. 107, 144 (2009) [Opt. Spektrosk. 107, 152 (2009)].
17. M. Ya. Litvak and V. I. Malyugin, “Monochromatic light scattering from non-Gaussian random relief,” Opt. Spectrosc. 109, 304 (2010) [Opt. Spektrosk. 109, 338 (2010)].
18. D. V. Kizevetter and V. I. Malyugin, “Measuring the angular input characteristics of radiation in fiber lightguides,” Opt. Spectrosc. 64, 677 (1988) [Opt. Spektrosk. 64, 1139 (1988)].
19. D. V. Kizevetter and V. I. Malyugin, “Method of measuring the angular characteristics of lightguides,” Sov. J. Opt. Technol. 56, 577 (1989) [Opt. Mekh. Prom. 56, No. 9, 48 (1989)].
20. I. A. Khramtsovskiı˘ and V. I. Pshenitsyn, “The role of specific pressure in the formation of the optical properties of the surface layer in polished quartz glass,” Sov. J. Opt. Technol. 53, 720 (1986) [Opt. Mekh. Prom. 53, No. 12, 26 (1986)].
21. D. V. Kizevetter, M. Ya. Litvak, and V. I. Malyugin, “Statistical characteristics of the surface microrelief of glasses during abrasive processing,” Sov. J. Opt. Technol. 56, 362 (1989) [Opt. Mekh. Prom. 56, No. 6, 33 (1989)].
22. D. V. Kizevetter, M. Ya. Litvak, and V. I. Malyugin, “Angular distribution of microareas and correlation functions of the rough surface profile of glasses,” Trudy LGTU No. 436, 87 (1991).
23. R. E. Gushlyak, A. Ya. Pozdnyakova, and A. I. Fleı˘sher, “Light-scattering lacquer in the technology of optical gratings,” Sov. J. Opt. Technol. 50, 259 (1983) [Opt. Mekh. Prom. 50, No. 4, 56 (1983)].