УДК: 681.586.4
Multiwave method of extending the range of recordable displacements in a vibroacoustic sensor based on a Fabry–Perot fiber interferometer
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ветров А.А., Власов Р.А., Данилов Д.А., Комиссаров С.С., Коцюбинский Т.Д., Сергушичев А.Н. Многоволновой метод расширения диапазона регистрируемых перемещений в виброакустическом датчике на основе волоконного интерферометра Фабри-Перо // Оптический журнал. 2015. Т. 82. № 9. С. 48–53.
Vetrov A.A., Vlasov R.A., Danilov D.A., Komissarov S.S., Kotsyubinskiy T.D., Sergushichev A.N. Multiwave method of extending the range of recordable displacements in a vibroacoustic sensor based on a Fabry–Perot fiber interferometer [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 9. P. 48–53.
A. A. Vetrov, R. A. Vlasov, D. A. Danilov, S. S. Komissarov, T. D. Kotsyubinskiĭ, and A. N. Sergushichev, "Multiwave method of extending the range of recordable displacements in a vibroacoustic sensor based on a Fabry–Perot fiber interferometer," Journal of Optical Technology. 82(9), 612-616 (2015). https://doi.org/10.1364/JOT.82.000612
This paper presents the results of a theoretical treatment of a method based on the use of a multiwave layout of a Fabry–Perot fiber interferometer that makes it possible to significantly increase the range of recordable displacements by comparison with a single-wave interferometer. The recording of the vibrations of the sensitive element of a vibroacoustic sensor whose amplitude is several times as great as the maximum possible for a single-wave interferometer is experimentally demonstrated.
fiber optics, Fabry–Perot fiber interferometer, vibroacoustic sensor, dynamic range
OCIS codes: 090.0090
References:1. A. A. Vetrov, S. S. Komissarov, and A. N. Sergushichev, “Fiber-optic end interferometer—a general-purpose element for constructing displacement sensors,” J. Opt. Technol. 75, 1 (2008) [Opt. Zh. 75, No. 1, 3 (2008)].
2. A. A. Vetrov, S. S. Komissarov, A. N. Sergushichev, M. V. Turkin, and A. A. Shirshov, “Analysis and optimization of the parameters of a fiber-optic interference microphone,” J. Opt. Technol. 78, 371 (2011) [Opt. Zh. 78, No. 6, 31 (2011)].
3. A. A. Vetrov, T. D. Kotsyubinskiı˘, and A. N. Sergushichev, “An adaptive system for controlling an interference fiber-optic displacement sensor,” J. Opt. Technol. 79, 20 (2012) [Opt. Zh. 79, No. 1, 29 (2012)].
4. D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19, 2926 (1980).
5. R. Hughes and R. Priest, “Thermally induced optical phase effects in fiber-optic sensors,” Appl. Opt. 19, 1477 (1980).
6. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445 (1979).
7. H. J. Yang and K. Riles, “High-precision absolute distance measurement using dual-laser frequency-scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575, 395 (2007).
8. K. Murphy, “Novel phase-modulated optical fiber sensors,” Doctoral dissertation (Virginia Polytechnic Institute and State University, Blacksburg, VA, 1992).