УДК: 535.8
Additive process for fabrication of phased optical diffraction elements
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Скиданов Р.В., Моисеев О.Ю., Ганчевская С.В. Аддитивная технология изготовления фазовых дифракционных оптических элементов // Оптический журнал. 2016. Т. 83. № 1. С. 32–35.
Skidanov R.V., Moiseev O.Yu., Ganchevskaya S.V. Additive process for fabrication of phased optical diffraction elements [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 1. P. 32–35.
R. V. Skidanov, O. Yu. Moiseev, and S. V. Ganchevskaya, "Additive process for fabrication of phased optical diffraction elements," Journal of Optical Technology. 83(1), 23-25 (2016). https://doi.org/10.1364/JOT.83.000023
We describe a process for fabrication of optical diffraction elements based on localized thermochemical oxidation of a thin chromium film. Once the recording procedure has been completed, the unoxidized chromium is removed, thereby forming a microrelief consisting of transparent chromium oxide.
thermochemical recording, diffraction optical element, chromium oxide
OCIS codes: 220.4000
References:1. M. N. Libenson, Laser-Induced Optical and Thermal Processes in Condensed Media and Their Interaction (Nauka, Saint Petersburg, 2007).
2. A. G. Poleschuk and V. P. Korolkov, “Laser writing systems and technologies for fabrication of binary and continuous-relief diffractive optical elements,” Proc. SPIE 6732, 67320X (2007).
3. V. P. Veı˘ko, Laser Treatment of Film Elements (Mashinostroenie, Leningrad, 1986).
4. V. P. Veı˘ko, G. A. Kotov, M. N. Libenson, and M. N. Nikitin, “Thermochemical action of laser radiation,” Sov. Phys. Dokl. 18(1), 83–85 (1973) [Dokl. Akad. Nauk SSSR 208(3), 587–590 (1973)].
5. V. P. Veı˘ko, V. P. Korolkov, A. G. Poleshchuk, A. R. Sametov, E. A. Shakhno, and M. V. Yarchuk, “Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures,” Quantum Electron. 41(7), 631–636 (2011) [Kvant. Elektron. 41(7), 631–636 (2011)].
6. V. P. Veı˘ko, E. A. Shakhno, A. G. Poleshchuk, V. P. Korolkov, and V. N. Matyzhonok, “Local laser oxidation of thin metal films: ultra-resolution in theory and in practice,” J. Laser Micro/Nanoeng. 3(3), 201–205 (2008).
7. G. A. Kotov and M. N. Libenson, “Kinetics of the growth of thin oxide films on a metal surface under pulsed heating,” Elektron. Tekhnol. 4(3), 56–64 (1973).
8. F. V. Bunkin, N. A. Kirichenko, and B. S. Luk’yanchuk, “Thermochemical action of laser radiation,” Sov. Phys. Usp. 25(9), 662–687 (1982) [Usp. Fiz. Nauk 138(1), 45–93 (1982)].
9. V. P. Veı˘ko, G. A. Kotov, and G. D. Shandybina, “Thermochemical method for laser machining of thin metal films,” Trudy LITMO, 106–112 (1980).
10. V. P. Veı˘ko, G. A. Kotov, M. N. Libenson, and M. N. Nikitin, “Thermochemical methods for obtaining microcircuit images using a laser,” in Proceedings of the School on Physics and Engineering Fundamentals of Laser Technology (LDNTP, Leningrad, 1970), pp. 43–46.
11. V. P. Veı˘ko, B. N. Kotletsov, and M. N. Libenson, Laser Lithography (Znanie, Leningrad, 1971).
12. S. M. Metev, S. K. Savtchenko, K. V. Stamenov, V. P. Veı˘ko, G. A. Kotov, and G. D. Shandibina, “Thermochemical action of laser radiation on thin metal films,” IEEE J. Quantum Electron. 17(10), 2004–2007 (1981).
13. S. M. Metev, S. K. Savtchenko, and K. V. Stamenov, “Pattern generation by laser-induced oxidation of thin metal films,” J. Phys. D 13, L75–L76 (1980).
14. R. B. Gerasimov, S. M. Metev, and S. K. Savtchenko, “Optimization of the process of laser-induced thermochemical image recording,” J. Phys. D 17, 1671 (1984).